- 2021-06-24 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届新高考版高考数学一轮复习精练:§8-1 空间几何体的表面积与体积(试题部分)
专题八 立体几何 【考情探究】 课标解读 考情分析 备考指导 主题 内容 一、空间几何体结构特征及体积与表面积公式 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. 2.了解球、棱柱、棱锥、棱台的表面积和体积的计算公式. 1.从近几年高考考查内容来看,这一部分主要考查空间几何体与涉及数学文化、空间几何体的表面积与体积、几何体的外接、内切球的计算,考查空间几何体侧面展开图问题,题型既有选择题,也有填空题,难度适中. 2.这一部分突出对空间直线、平面位置关系的判断,会求两异面直线所成的角,在解答题中主要是考查直线与平面平行、垂直的判定与性质,常出现在解答题第一问,难度中等,解题时注意线线、线面、面面平行、垂直位置关系的相互转化. 3.利用空间向量证明平行与垂直以及求空间角(特别是二面角)、空间距离均是高考的热点,通过向量的运算来证明直线平行、垂直,求夹角,难度中等,以解答题形式出现,把立体几何问题转化为空间向量问题. 1.强化识图能力,还原成自己熟悉的几何体. 2.对图形或其某部分进行平移、翻折、旋转、展开或割补. 3.重视立体几何最值问题的研究. 4.平面展开图(折线转化成直线). 5.完善知识网络,强调通性通法,以下是平行垂直关系的转化关系图. 6.加强空间向量对垂直问题的研究: 空间直角坐标系的建立是基于三线两两垂直的,因此只有真正掌握了对垂直关系的判断、论证的研究方法,真正理解法向量的自由性,以及求法向量的方法,才能使问题顺利解决. 二、空间点、线、面的位置关系 1.理解空间直线、平面位置关系的定义. 2.能运用公式、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 3.以立体几何的定义、公理和定理为出发点,认识和理解空间中线、面平行的判定定理与有关性质. 4.以立体几何的定义、公理和定理为出发点,认识和理解空间中线、面垂直的判定定理与有关性质. 三、空间向量运算及立体几何中的向量方法 1.掌握空间向量的线性运算、数量积及其坐标表示、用向量的数量积判断向量的平行与垂直. 2.理解直线的方向向量与平面的法向量. 3.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系. 4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的作用. 【真题探秘】 §8.1 空间几何体的表面积与体积 基础篇固本夯基 【基础集训】 考点一 空间几何体的结构特征 1.给出下列命题: ①棱柱的侧棱都相等,侧面都是全等的平行四边形; ②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③存在每个面都是直角三角形的四面体;④棱台的侧棱延长后交于一点.其中正确命题的序号是 . 答案 ②③④ 2.给出下列命题: ①在圆柱上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是圆锥; ④以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台; ⑤圆柱、圆锥、圆台的底面都是圆面; ⑥一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题的序号是 . 答案 ⑤ 3.如图,矩形O'A'B'C'是水平放置的一个平面图形的直观图,其中O'A'=6 cm,O'C'=2 cm,则原图形OABC的形状是 . 答案 菱形 4.一梯形的直观图是一个如图所示的等腰梯形,且梯形O'A'B'C'的面积为2,则原梯形的面积为 . 答案 4 考点二 空间几何体的体积 5.如图所示,正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3,D为BC的中点,则三棱锥A-B1DC1的体积为( ) A.3 B.32 C.1 D.32 答案 C 6.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为( ) A.6π B.43π C.46π D.63π 答案 B 7.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,则四边形ABCD绕AD所在直线旋转一周所形成几何体的体积为 . 答案 1483π 考点三 空间几何体的表面积 8.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,且AB=3,AC=4,AB⊥AC,AA1=12,则球O的表面积是 . 答案 169π 9.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵ABC-A1B1C1中,AA1=AC=5,AB=3,BC=4,则阳马C1-ABB1A1的外接球的表面积是 . 答案 50π 综合篇知能转换 【综合集训】 考法一 与表面积和体积有关的问题 1.(2017课标Ⅰ,16,5分)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 . 答案 415 2.(2020届浙江东阳中学10月月考,16)顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥PB,垂足为H,且PA=4,C是PA的中点,则当三棱锥O-HPC的体积最大时,OB的长为 . 答案 263 考法二 与球有关的切、接问题 3.(2016课标全国Ⅲ,11,5分)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( ) A.4π B.9π2 C.6π D.32π3 答案 B 4.(2019皖中入学摸底,10)将半径为3,圆心角为2π3的扇形围成一个圆锥(接缝处忽略不计),则该圆锥的内切球的体积为( ) A.2π3 B.3π3 C.4π3 D.2π 答案 A 5.(2018四川南充模拟,9)已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为( ) A.323π B.48π C.24π D.16π 答案 A 6.(2017江苏,6,5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则V1V2的值是 . 答案 32 7.(2018湖南师大附中模拟,16)在体积为43的三棱锥S-ABC中,AB=BC=2,∠ABC=90°,SA=SC,且平面SAC⊥平面ABC,若该三棱锥的四个顶点都在同一球面上,则该球的体积是 . 答案 92π 8.(2018江西南昌二中1月模拟,16)在三棱锥S-ABC中,△ABC是边长为3的等边三角形,SA=3,SB=23,二面角S-AB-C的大小为120°,则此三棱锥的外接球的表面积为 . 答案 21π 应用篇知行合一 【应用集训】 1.(2015课标Ⅰ,6,5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A.14斛 B.22斛 C.36斛 D.66斛 答案 B 2.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ) A.500π3 cm3 B.866π3 cm3 C.1 372π3 cm3 D.2 048π3 cm3 答案 A 3.(2019课标Ⅲ,16,5分)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3.不考虑打印损耗,制作该模型所需原料的质量为 g. 答案 118.8 【五年高考】 考点一 空间几何体的结构特征 1.(2019课标Ⅱ,16,5分)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分) 图1 图2 答案 26;2-1 考点二 空间几何体的体积 2.(2019课标Ⅰ,12,5分)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( ) A.86π B.46π C.26π D.6π 答案 D 3.(2015山东,7,5分)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π 答案 C 4.(2019江苏,9,5分)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是 . 答案 10 5.(2019天津,11,5分)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 . 答案 π4 6.(2018天津,11,5分)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为 . 答案 112 7.(2018江苏,10,5分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 答案 43 8.(2017天津,10,5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 答案 92π 9.(2015江苏,9,5分)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 . 答案 7 10.(2016江苏,17,14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍. (1)若AB=6 m,PO1=2 m,则仓库的容积是多少? (2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大? 解析 (1)由PO1=2 m知O1O=4PO1=8 m. 因为A1B1=AB=6 m,所以正四棱锥P-A1B1C1D1的体积V锥=13·A1B12·PO1=13×62×2=24(m3); 正四棱柱ABCD-A1B1C1D1的体积V柱=AB2·O1O=62×8=288(m3). 所以仓库的容积V=V锥+V柱=24+288=312(m3). (2)设A1B1=a(m),PO1=h(m),则0查看更多
相关文章
- 当前文档收益归属上传用户