- 2021-06-24 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习练习:考点规范练31
考点规范练31 数列求和 考点规范练A册第22页 基础巩固 1.数列112,314,518,7116,…,(2n-1)+12n,…的前n项和Sn的值等于( ) A.n2+1-12n B.2n2-n+1-12n C.n2+1-12n-1 D.n2-n+1-12n 答案A 解析该数列的通项公式为an=(2n-1)+12n,则Sn=[1+3+5+…+(2n-1)]+12+122+…+12n=n2+1-12n. 2.(2016山西太原三模)数列{an}满足a1=1,且对任意的n∈N*都有an+1=a1+an+n,则1an的前100项和为( ) A.100101 B.99100 C.101100 D.200101〚导学号74920272〛 答案D 解析∵an+1=a1+an+n,∴an+1-an=1+n.∴an-an-1=n. ∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =n+(n-1)+…+2+1=n(n+1)2. ∴1an=2n(n+1)=21n-1n+1. ∴1an的前100项和为21-12+12-13+…+1100- 1101=21-1101=200101.故选D. 3.(2016山西太原五中4月模拟)已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=( ) A.0 B.-100 C.100 D.10 200〚导学号74920273〛 答案B 解析∵f(n)=n2cos(nπ)=-n2,n为奇数,n2,n为偶数=(-1)n·n2, ∴an=f(n)+f(n+1)=(-1)n·n2+(-1)n+1·(n+1)2=(-1)n[n2-(n+1)2]=(-1)n+1·(2n+1). ∴a1+a2+a3+…+a100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.故选B. 4.已知函数f(x)=xa的图象过点(4,2),令an=1f(n+1)+f(n),n∈N*.记数列{an}的前n项和为Sn,则S2 016等于( ) A.2 016-1 B.2 016+1 C.2 017-1 D.2 017+1〚导学号74920274〛 答案C 解析由f(4)=2,可得4a=2,解得a=12,则f(x)=x12. ∴an=1f(n+1)+f(n)=1n+1+n=n+1-n, S2 016=a1+a2+a3+…+a2 016=(2-1)+(3-2)+(4-3)+…+(2 017-2 016)=2 017-1. 5.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830〚导学号74920275〛 答案D 解析∵an+1+(-1)nan=2n-1, ∴当n=2k(k∈N*)时,a2k+1+a2k=4k-1,① 当n=2k+1(k∈N*)时,a2k+2-a2k+1=4k+1,② ①+②得:a2k+a2k+2=8k. 则a2+a4+a6+a8+…+a60=(a2+a4)+(a6+a8)+…+(a58+a60)=8(1+3+…+29)=8×15×(1+29)2=1 800. 由②得a2k+1=a2k+2-(4k+1), ∴a1+a3+a5+…+a59=a2+a4+…+a60-[4×(0+1+2+…+29)+30]=1 800-4×30×292+30=30, ∴a1+a2+…+a60=1 800+30=1 830. 6.3·2-1+4·2-2+5·2-3+…+(n+2)·2-n= .〚导学号74920276〛 答案4-n+42n 解析设Sn=3·2-1+4·2-2+5·2-3+…+(n+2)·2-n,① 则12Sn=3·2-2+4·2-3+…+(n+1)2-n+(n+2)2-n-1.② ①-②,得12Sn=3·2-1+2-2+2-3+…+2-n-(n+2)·2-n-1=2·2-1+2-1+2-2+2-3+…+2-n-(n+2)·2-n-1=1+2-1(1-2-n)1-2-1-(n+2)·2-n-1=2-(n+4)·2-n-1. 故Sn=4-n+42n. 7.(2016河南商丘三模)已知数列{an}满足:a3=15,an-an+1=2anan+1,则数列{anan+1}前10项的和为 .〚导学号74920277〛 答案1021 解析∵an-an+1=2anan+1,∴an-an+1anan+1=2,即1an+1-1an=2. ∴数列1an是以2为公差的等差数列. ∵1a3=5,∴1an=5+2(n-3)=2n-1.∴an=12n-1. ∴anan+1=1(2n-1)(2n+1)=1212n-1-12n+1. ∴数列{anan+1}前10项的和为 121-13+13-15+…+12×10-1-12×10+1 =12×1-121=12×2021=1021. 8.(2016北京,文15)已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4. (1)求{an}的通项公式; (2)设cn=an+bn,求数列{cn}的前n项和. 解(1)因为等比数列{bn}的公比q=b3b2=93=3, 所以b1=b2q=1,b4=b3q=27. 设等差数列{an}的公差为d. 因为a1=b1=1,a14=b4=27, 所以1+13d=27,即d=2.所以an=2n-1. (2)由(1)知,an=2n-1,bn=3n-1. 因此cn=an+bn=2n-1+3n-1. 从而数列{cn}的前n项和 Sn=1+3+…+(2n-1)+1+3+…+3n-1 =n(1+2n-1)2+1-3n1-3=n2+3n-12.〚导学号74920278〛 9.设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100. (1)求数列{an},{bn}的通项公式; (2)当d>1时,记cn=anbn,求数列{cn}的前n项和Tn. 解(1)由题意,有10a1+45d=100,a1d=2, 即2a1+9d=20,a1d=2,解得a1=1,d=2或a1=9,d=29. 故an=2n-1,bn=2n-1或an=19(2n+79),bn=9·29n-1. (2)由d>1,知an=2n-1,bn=2n-1, 故cn=2n-12n-1, 于是Tn=1+32+522+723+924+…+2n-12n-1,① 12Tn=12+322+523+724+925+…+2n-12n.② ①-②可得12Tn=2+12+122+…+12n-2-2n-12n=3-2n+32n,故Tn=6-2n+32n-1.〚导学号74920279〛 10.已知Sn为数列{an}的前n项和,an>0,an2+2an=4Sn+3. (1)求{an}的通项公式; (2)设bn=1anan+1,求数列{bn}的前n项和. 解(1)由an2+2an=4Sn+3, 可知an+12+2an+1=4Sn+1+3. 两式相减可得an+12-an2+2(an+1-an)=4an+1, 即2(an+1+an)=an+12-an2=(an+1+an)·(an+1-an). 由于an>0,可得an+1-an=2. 又a12+2a1=4a1+3,解得a1=-1(舍去),a1=3. 所以{an}是首项为3,公差为2的等差数列,故{an}的通项公式为an=2n+1. (2)由an=2n+1可知bn=1anan+1=1(2n+1)(2n+3) =1212n+1-12n+3. 设数列{bn}的前n项和为Tn, 则Tn=b1+b2+…+bn=1213-15+15-17+…+ 12n+1-12n+3=n3(2n+3).〚导学号74920280〛 11.(2016全国高考预测模拟一)已知各项均为正数的数列{an}的前n项和为Sn,满足an+12=2Sn+n+4,a2-1,a3,a7恰为等比数列{bn}的前3项. (1)求数列{an},{bn}的通项公式; (2)若cn=(-1)nlog2bn-1anan+1,求数列{cn}的前n项和Tn. 解(1)因为an+12=2Sn+n+4, 所以an2=2Sn-1+n-1+4(n≥2). 两式相减得an+12-an2=2an+1, 所以an+12=an2+2an+1=(an+1)2. 因为{an}是各项均为正数的数列,所以an+1-an=1. 又a32=(a2-1)a7,所以(a2+1)2=(a2-1)(a2+5),解得a2=3,a1=2, 所以{an}是以2为首项,1为公差的等差数列,所以an=n+1. 由题意知b1=2,b2=4,b3=8,故bn=2n. (2)由(1)得cn=(-1)nlog22n-1(n+1)(n+2)=(-1)nn-1(n+1)(n+2), 故Tn=c1+c2+…+cn=[-1+2-3+…+(-1)nn]-12×3+13×4+…+1(n+1)×(n+2). 设Fn=-1+2-3+…+(-1)nn. 则当n为偶数时,Fn=(-1+2)+(-3+4)+…+[-(n-1)+n]=n2; 当n为奇数时,Fn=Fn-1+(-n)=n-12-n=-(n+1)2. 设Gn=12×3+13×4+…+1(n+1)×(n+2), 则Gn=12-13+13-14+…+1n+1-1n+2=12-1n+2. 所以Tn=n-12+1n+2(n为偶数),-n+22+1n+2(n为奇数).〚导学号74920281〛 能力提升 12.(2016河南商丘二模)已知首项为32的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列. (1)求数列{an}的通项公式; (2)设bn=(-1)n+1·n(n∈N*),求数列{an·bn}的前n项和Tn. 解(1)设等比数列{an}的公比为q. 由S3+a3,S5+a5,S4+a4成等差数列, 可得2(S5+a5)=S3+a3+S4+a4, 即2(S3+a4+2a5)=2S3+a3+2a4, 即4a5=a3,则q2=a5a3=14,解得q=±12. 由等比数列{an}不是递减数列,可得q=-12, 故an=32·-12n-1=(-1)n-1·32n. (2)由bn=(-1)n+1·n,可得an·bn=(-1)n-1·32n·(-1)n+1·n=3n·12n. 故前n项和Tn=31·12+2·122+…+n·12n, 则12Tn=31·122+2·123+…+n·12n+1, 两式相减可得, 12Tn=312+122+…+12n-n·12n+1 =3121-12n1-12-n·12n+1, 化简可得Tn=61-n+22n+1.〚导学号74920282〛 13.已知数列{an}的前n项和为Sn,且a1=0,对任意n∈N*,都有nan+1=Sn+n(n+1). (1)求数列{an}的通项公式; (2)若数列{bn}满足an+log2n=log2bn,求数列{bn}的前n项和Tn. 解(1)(方法一)∵nan+1=Sn+n(n+1), ∴当n≥2时,(n-1)an=Sn-1+n(n-1), 两式相减得nan+1-(n-1)an=Sn-Sn-1+n(n+1)-n(n-1), 即nan+1-(n-1)an=an+2n,得an+1-an=2. 当n=1时,1×a2=S1+1×2,即a2-a1=2. ∴数列{an}是以0为首项,2为公差的等差数列. ∴an=2(n-1)=2n-2. (方法二)由nan+1=Sn+n(n+1), 得n(Sn+1-Sn)=Sn+n(n+1), 整理得,nSn+1=(n+1)Sn+n(n+1), 两边同除以n(n+1)得,Sn+1n+1-Snn=1. ∴数列Snn是以S11=0为首项,1为公差的等差数列. ∴Snn=0+n-1=n-1.∴Sn=n(n-1). 当n≥2时,an=Sn-Sn-1=n(n-1)-(n-1)(n-2)=2n-2. 又a1=0适合上式,∴数列{an}的通项公式为an=2n-2. (2)∵an+log2n=log2bn, ∴bn=n·2an=n·22n-2=n·4n-1. ∴Tn=b1+b2+b3+…+bn-1+bn=40+2×41+3×42+…+(n-1)×4n-2+n×4n-1,① 4Tn=41+2×42+3×43+…+(n-1)×4n-1+n×4n,② ①-②,得-3Tn=40+41+42+…+4n-1-n×4n =1-4n1-4-n×4n=(1-3n)4n-13. ∴Tn=19[(3n-1)4n+1].〚导学号74920283〛 高考预测 14.已知数列{an}的前n项和为Sn,且a1=2,Sn=2an+k,等差数列{bn}的前n项和为Tn,且Tn=n2. (1)求k和Sn; (2)若cn=an·bn,求数列{cn}的前n项和Mn. 解(1)∵Sn=2an+k, ∴当n=1时,S1=2a1+k. ∴a1=-k=2,即k=-2.∴Sn=2an-2. ∴当n≥2时,Sn-1=2an-1-2. ∴an=Sn-Sn-1=2an-2an-1.∴an=2an-1. ∴数列{an}是以2为首项,2为公比的等比数列.即an=2n. ∴Sn=2n+1-2. (2)∵等差数列{bn}的前n项和为Tn,且Tn=n2, ∴当n≥2时,bn=Tn-Tn-1=2n-1. 又b1=T1=1符合bn=2n-1, ∴bn=2n-1.∴cn=an·bn=(2n-1)2n. ∴数列{cn}的前n项和Mn=1×2+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,① ∴2Mn=1×22+3×23+5×24+…+(2n-3)×2n+(2n-1)×2n+1,② 由①-②,得-Mn=2+2×22+2×23+2×24+…+2×2n-(2n-1)×2n+1=2+2×22-2n+11-2-(2n-1)×2n+1, 即Mn=6+(2n-3)2n+1.〚导学号74920284〛查看更多