西藏林芝二中2020届高三上学期第三次月考数学(文)试卷
文科数学
(考试时间:120分钟 试卷满分:150分)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|–1
1},则A∪B=
(A)(–1,1) (B)(1,2) (C)(–1,+∞) (D)(1,+∞)
2.已知复数z=2+i,则
(A) (B) (C)3 (D)5
3.下列函数中,在区间(0,+)上单调递增的是
(A) (B)y= (C) (D)
4.执行如图所示的程序框图,输出的s值为
(A)1 (B)2
(C)3 (D)4
5.已知双曲线(a>0)的离心率是,则a=
(A) (B)4
(C)2 (D)
6.设函数f(x)=cosx+bsinx(b为常数),则“b=0”是“f(x)为偶函数”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
7.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是
A. B. C. D.
8.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为
A.0.5 B.0.6 C.0.7 D.0.8
9.函数在[0,2π]的零点个数为
A.2 B.3 C.4 D.5
10.已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=
A. 16 B. 8 C.4 D. 2
11.已知曲线在点(1,ae)处的切线方程为y=2x+b,则
A.a=e,b=-1 B.a=e,b=1 C.a=e-1,b=1 D.a=e-1,
12.设是定义域为R的偶函数,且在单调递减,则
A.(log3)>()>() B.(log3)>()>()
C.()>()>(log3) D.()>()>(log3)
第二部分(非选择题 共90分)
二、填空题共4小题,每小题5分,共20分。
13.已知向量=(–4,3),=(6,m),且,则m=__________.
14.若x,y满足 则的最小值为__________,最大值为__________.
15.设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为__________.
16.设等比数列满足a1 + a2 = –1, a1 – a3 = –3,则a4 = ___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
17.(12分)
在△ABC中,a=3,,cosB=.
(Ⅰ)求b,c的值;
(Ⅱ)求sin(B+C)的值.
18.(12分)
{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.
19.(12分)
如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.
20.(12分)
已知椭圆的右焦点为,且经过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.
21.(12分)
已知函数.
(Ⅰ)求曲线的斜率为1的切线方程;
(Ⅱ)当时,求证:;
(Ⅲ)设,记在区间上的最大值为M(a),当M(a)最小时,求a的值.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修44:坐标系与参数方程](10分)
在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为.设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-=0,M为l3与C的交点,求M的极径.
23.[选修45:不等式选讲](10分)
已知函数f(x)=│x+1│–│x–2│.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2–x +m的解集非空,求m的取值范围.
参考答案
一、选择题一、选择题
(1)C (2)D (3)A (4)B
(5)D (6)C (7)D (8)C
(9)B (10)C (11)D (12)C
二、填空题(共6小题,每小题5分,共30分)
(13)8 (14)–3 1
(15)
(16)-8
三、解答题(共6小题,共80分)
17(共12分)
解:(Ⅰ)由余弦定理,得
.
因为,
所以.
解得.
所以.
(Ⅱ)由得.
由正弦定理得.
在中,.
所以.
(18)(共12分)
解:(Ⅰ)设的公差为.
因为,
所以.
因为成等比数列,
所以.
所以.
解得.
所以.
(Ⅱ)由(Ⅰ)知,.
所以,当时,;当时,.
所以,的最小值为.
(19)(共12分)
解:(Ⅰ)因为平面ABCD,
所以.
又因为底面ABCD为菱形,
所以.
所以平面PAC.
(Ⅱ)因为PA⊥平面ABCD,平面ABCD,
所以PA⊥AE.
因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,
所以AE⊥CD.
所以AB⊥AE.
所以AE⊥平面PAB.
所以平面PAB⊥平面PAE.
(Ⅲ)棱PB上存在点F,使得CF∥平面PAE.
取F为PB的中点,取G为PA的中点,连结CF,FG,EG.
则FG∥AB,且FG=AB.
因为底面ABCD为菱形,且E为CD的中点,
所以CE∥AB,且CE=AB.
所以FG∥CE,且FG=CE.
所以四边形CEGF为平行四边形.
所以CF∥EG.
因为CF平面PAE,EG平面PAE,
所以CF∥平面PAE.
(20)(共12分)
解:(I)由题意得,b2=1,c=1.
所以a2=b2+c2=2.
所以椭圆C的方程为.
(Ⅱ)设P(x1,y1),Q(x2,y2),
则直线AP的方程为.
令y=0,得点M的横坐标.
又,从而.
同理,.
由得.
则,.
所以
.
又,
所以.
解得t=0,所以直线l经过定点(0,0).
(21)(共12分)
解:(Ⅰ)由得.
令,即,得或.
又,,
所以曲线的斜率为1的切线方程是与,
即与.
(Ⅱ)令.
由得.
令得或.
的情况如下:
所以的最小值为,最大值为.
故,即.
(Ⅲ)由(Ⅱ)知,
当时,;
当时,;
当时,.
综上,当最小时,.
22.解:
(1)消去参数t得l1的普通方程;消去参数m得l2的普通方程
设P(x,y),由题设得,消去k得.
所以C的普通方程为
(2)C的极坐标方程为
联立得.
故,从而
代入得,所以交点M的极径为.
23.解:
(1)
当时,无解;
当时,由得,,解得
当时,由解得.
所以的解集为.
(2)由得,而
且当时,.
故m的取值范围为