- 2021-06-23 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数学文卷·2018届西藏林芝一中高三第四次月考(2017
林芝市第一中学2018届高三第四次月考 数学(文)试卷 满分:150分 考试时间:120分钟. 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.已知全集,,,则=( ) A. B. C. D. 2.已知复数为纯虚数(其中是虚数单位),则的值为( ) A. 2 B. -2 C. D. 3.已知, ,则的值为( ). A. B. C. D. 4.圆的圆心到直线的距离为1,则=( ) A.- B.- C. D.2 5.已知函数,则( ) A. B. C. D 6.则的值等于( ) A.﹣4 B.﹣3 C.﹣2 D.﹣1 A.5 B.3 C.﹣1 D. 8.在等比数列中,“,是方程的两根”是“”的( ) A. 充要条件 B. 必要不充分条件 C. 充分不必要条件 D. 既不充分也不必要条件 9. 函数的零点所在的大致区间是( ) A. B. C. D. 10. 抛物线的焦点坐标是( ) A.(0,2) B.(0,1) C.(2,0) D.(1,0) 11.要得到函数的图象,只需将函数的图象( ) A.向右平移个单位 B.向左平移个单位 C.向左平移个单位 D.向右平移个单位 12.已知函数是奇函数,且,,若, 则( ) A.1 B.2 C.3 D.4 第Ⅱ卷(非选择题 共90分) 二、填空题(本大题共4小题,每小题5分,共20分) 13.命题“”的否定是 14.若双曲线的实轴长是10,则此双曲线的渐近线方程为____________. 15.在△ABC中,sinA :sinB :sinC=2 :3 :4,则△ABC中最大边所对角的余弦值为___________. 16. 若直线与平行,则_______________. 三、解答题:(本大题共6小题,共70分) 17.(本小题满分12分) 已知分别是三角形的角所对的边,且. (1)求角; (2)若,求三角形的面积. 18.(本小题满分12分) 已知函数的一条对称轴为,且最高点的纵坐标是. (1)求的最小值及此时函数的最小正周期、初相; (2)在(1)的情况下,设,求函数在上的最大值和最小值. 19.(本小题满分12分) 已知等差数列中, (1)求的通项公式; (2)设=,求数列的前10项和,其中表示不超过的最大整数,如[0.9]=0,[2.6]=2. 20.(本小题共12分) 已知椭圆C:的离心率为,点(2,)在C上. (1)求C的方程; (2)直线l不经过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值. 21. (本小题满分12分) 已知函数,曲线经过点,且在点处的切线为 . (1)求的值; (2)若存在实数,使得时,恒成立,求的取值范围. 22. 选修4-4:坐标系与参数方程(10分) 已知曲线的极坐标方程为,以极点为平面直角坐标系的原点,极轴为的正半轴,建立平面直角坐标系. (1)若曲线为参数)与曲线相交于两点,求; (2)若是曲线上的动点,且点的直角坐标为,求的最大值. 第四次月考文科数学答案 一、选择题 CBAAD BACAD BC 二、填空题 13. 14. 15. 16. 三解答题 17. 解:(1)由余弦定理,得, 又,所以.(2)由, 得, 得, 再由正弦定理得,所以.① 又由余弦定理,得,② 由①②,得,得,得, 联立,得,. 所以.所以. 所以的面积. 18. 解:(1), 因为函数的一条对称轴为, 所以,解得. 又,所以当时,取得最小正值. 因为最高点的纵坐标是,所以,解得, 故此时. 此时,函数的最小正周期为,初相为. (2), 因为函数在上单调递增,在上单调递减, 所以在上的最大值为,最小值为. 19.解 (1)设数列{an}的公差为d,由题意有2a1+5d=4,a1+5d=3, 解得a1=1,d=. 所以{an}的通项公式为an=. (2)由(1)知,bn=. 当n=1,2,3时,1≤<2,bn=1; 当n=4,5时,2≤<3,bn=2; 当n=6,7,8时,3≤<4,bn=3; 当n=9,10时,4≤<5,bn=4. 所以数列{bn}的前10项和为1×3+2×2+3×3+4×2=24. 20.解 (1)由题意得=,+=1,解得a2=8,b2=4. 所以C的方程为+=1. (2)设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代入+=1得 (2k2+1)x2+4kbx+2b2-8=0.故xM==,yM=k·xM+b=. 于是直线OM的斜率kOM==-,即kOM·k=-. 所以直线OM的斜率与直线l的斜率的乘积为定值. 21.解:(1), 依题意:,即,解得. (2)由(1)知,, 由得:, ∵时,. ∴即恒成立,当且仅当. 设,,, 由得(舍去),, 当时,;当时,, ∴在区间上的最大值为, 所以常数的取值范围为. 22.试题解析:(1)化为直角坐标方程为,................1分 为参数)可化为为参数),...................2分 代入,得的,化简得,................4分 设对应的参数为,则, 所以.................5分 (2)在曲线上,设为参数) 则,................6分 令,则, 那么, ................8分 所以.................10分查看更多