数学理卷·2018届广东省广雅学校高三诊断性测试(一)(2018

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

数学理卷·2018届广东省广雅学校高三诊断性测试(一)(2018

广雅中学2018届高三(下)诊断性测试试卷(一)‎ 一、 选择题:本大题共12小题,每小题5分,共60分.‎ ‎1.设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁UA)∪B=R,则实数a的取值范围是(  )‎ A.(﹣∞,1) B.(﹣∞,1] C.(1,+∞) D.[1,+∞)‎ ‎2.若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=1﹣2i,则复数在复平面内对应的点在(  )‎ A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎3.已知向量=(m﹣1,1),=(m,﹣2),则“m=2”是“⊥”的(  )‎ A.充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件 ‎4.若,则sin2α的值为(  )‎ A. B. C. D.‎ ‎5.已知等比数列{an}的前n项和为Sn,且9S3=S6,a2=1,则a1=(  )‎ A. B. C. D.2‎ ‎6.已知曲线﹣=1(a>0,b>0)为等轴双曲线,且焦点到渐近线的距离为,则该双曲线的方程为(  )‎ A. B.x2﹣y2=1 C. D.x2﹣y2=2‎ ‎7.我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是(  )‎ A. B.‎ C. D.‎ ‎8.如图,在一个正方体内放入两个半径不相等的球O1、O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是(  )‎ A. B. C. D.‎ ‎9.如图,某建筑工地搭建的脚手架局部类似于一个2×2×3 的长方体框架,一个建筑工人欲从 A处沿脚手架攀登至 B处,则其最近的行走路线中不连续向上攀登的概率为(  )‎ A. B. C. D.‎ ‎10.函数y=的图象大致是(  )‎ A. B. C. D.‎ ‎11.抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)(  )‎ A. B. C. D.‎ ‎12.已知函数,若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,xn,且x1<x2<x3<…<xn ‎,则x1+2x2+2x3+…‎ ‎+2xn﹣1+xn=(  )‎ A. B.445π C.455π D.‎ ‎ 二、填空题:本大题共4小题,每小题5分,共20分.‎ ‎13.(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于   .‎ ‎14.设x,y满足约束条件,且x,y∈Z,则z=3x+5y的最大值为   .‎ ‎15.设f(x)=,且f(f(a))=2,则满足条件的a的值有 ‎ ‎ ‎ ‎16.一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为   .‎ 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.‎ ‎17.在△ABC中,角A,B,C所对应的边分别为a,b,c,且2cosB(acosC+ccosA)+b=0.‎ ‎(Ⅰ)求角B的大小;‎ ‎(Ⅱ)若a=3,点D在AC边上且BD⊥AC,BD=,求c.‎ ‎18.(12分)如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.‎ ‎(Ⅰ)求证:平面PBC⊥平面PEC;‎ ‎(Ⅱ)求二面角B﹣PE﹣D的余弦值.‎ ‎19.(12分)近年来我国电子商务行业迎来蓬勃发展的新机遇,2017年双11期间,某购物平台的销售业绩高达1271亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.‎ ‎(Ⅰ)完成下面的 2×2列联表,并回答是否有99%的把握,认为商品好评与服务好评有关?‎ 对服务好评 对服务不满意 合计 对商品好评 对商品不满意 合计 ‎200‎ ‎(Ⅱ)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X:‎ ‎(1)求对商品和服务全好评的次数X的分布列;‎ ‎(2)求X的数学期望和方差.‎ 附:‎ P(K2≥k)‎ ‎0.15‎ ‎0.10‎ ‎0.05‎ ‎0.025‎ ‎0.010‎ ‎0.005‎ ‎0.001‎ ‎ k ‎2.072‎ ‎2.706‎ ‎3.841‎ ‎5.024‎ ‎6.635‎ ‎7.879‎ ‎10.828‎ ‎(,其中n=a+b+c+d)‎ ‎20.(10分)已知直线l:3x﹣y﹣6=0,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ﹣4sinθ=0.‎ ‎(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π),)的形式,并求曲线C的直角坐标方程;‎ ‎(Ⅱ)过曲线C上任意一点P作倾斜角为30°的直线,交l于点A,求|AP|的最值.‎ 参考答案与试题解析 ‎ ‎ 一、选择题:‎ ‎1.A.2.D.3.A.4.C.5.A.6.D.7.D.8.B9.C.10.D11.D.12.C ‎ ‎ 二、填空题:‎ ‎13.﹣240.14.13.15.4.16..‎ ‎ ‎ 三、解答题:‎ ‎17.解:(Ⅰ)在△ABC中,角A,B,C所对应的边分别为a,b,c,‎ 且2cosB(acosC+ccosA)+b=0.‎ 则:2cosB(sinAcosC+sinCcosA)+sinB=0,‎ 整理得:2cosBsin(A+C)=﹣sinB,‎ 由于:0<B<π,则:sinB≠0,解得:,‎ 所以:B=.‎ ‎(Ⅱ)点D在AC边上且BD⊥AC,‎ 在直角△BCD中,若a=3,BD=,‎ 解得:,解得:,‎ 则:,,‎ 所以:cos∠ABD===,‎ 则:在Rt△ABD中,,=.故:c=5.【来源:全,品…中&高*考+网】‎ ‎ ‎ ‎18.(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,‎ ‎∴AB=AE,取BE中点O,连接PO,则PO⊥BE,‎ 又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,‎ ‎∴PO⊥平面BCDE,则PO⊥EC,‎ 在矩形ABCD中,∴AD=2AB,E为AD的中点,‎ ‎∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,‎ ‎∴PB⊥平面PEC,而PB⊂平面PBC,‎ ‎∴平面PBC⊥平面PEC;‎ ‎(Ⅱ)解:以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,‎ ‎∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),‎ ‎∴,,=(,,﹣).‎ 设平面PED的一个法向量为,‎ 由,令z=﹣1,则,‎ 又平面PBE的一个法向量为,‎ 则cos<>==.‎ ‎∴二面角B﹣PE﹣D的余弦值为.‎ ‎ ‎ ‎19.解:(Ⅰ)由题意可得关于商品和服务评价的2×2列联表如下:‎ 对服务好评 对服务不满意 合计 对商品好评 ‎80‎ ‎40‎ ‎120【来源:全,品…中&高*考+网】‎ 对商品不满意 ‎70‎ ‎10‎ ‎80‎ 合计【来源:全,品…中&高*考+网】‎ ‎150‎ ‎50‎ ‎200‎ K2=≈11.111>6.635,【来源:全,品…中&高*考+网】‎ 故有99%的把握,认为商品好评与服务好评有关.‎ ‎(Ⅱ)(1)每次购物时,对商品和服务全为好评的概率为,且X的取值可以是0,1,2,3.其中P(X=0)=()3=,‎ P(X=1)==,‎ P(X=2)=,‎ P(X=3)==,‎ X的分布列为:‎ ‎ X ‎ 0‎ ‎ 1‎ ‎ 2‎ ‎ 3‎ ‎ P ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎(2)∵X~B(3,),‎ ‎∴E(X)=, D(X)=3×=.‎ ‎【来源:全,品…中&高*考+网】‎ ‎20.‎ 解:(Ⅰ)直线l:3x﹣y﹣6=0,转化为直角坐标方程为:(t为参数),曲线C:ρ﹣4sinθ=0.转化为直角坐标方程为:x2+y2﹣4y=0.‎ ‎(Ⅱ)首先把x2+y2﹣4y=0的方程转化为:x2+(y﹣2)2=4,‎ 所以经过圆心,且倾斜角为30°的直线方程为:,‎ 则:,解得:,‎ 则:=,‎ 则:|AP|的最大值为:,‎ ‎|AP|的最小值为:.‎
查看更多

相关文章

您可能关注的文档