- 2021-06-23 发布 |
- 37.5 KB |
- 22页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2017年高考数学(理,山东)二轮专题复习(教师用书):第1部分 专题6 突破点18 导数的应用(酌情自选)
突破点18 导数的应用(酌情自选) (对应学生用书第167页) 提炼1 导数与函数的单调性 (1)函数单调性的判定方法 在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在此区间内单调递增;如果f′(x)<0,那么函数y=f(x)在此区间内单调递减. (2)常数函数的判定方法 如果在某个区间(a,b)内,恒有f′(x)=0,那么函数y=f(x)是常数函数,在此区间内不具有单调性. (3)已知函数的单调性求参数的取值范围 设可导函数f(x)在某个区间内单调递增(或递减),则可以得出函数f(x)在这个区间内f′(x)≥0(或f′(x)≤0),从而转化为恒成立问题来解决(注意等号成立的检验). 提炼2 函数极值的判别注意点 (1)可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f(x)=x3,当x=0时就不是极值点,但f′(0)=0. (2)极值点不是一个点,而是一个数x0,当x=x0时,函数取得极值.在x0处有f′(x0)=0是函数f(x)在x0处取得极值的必要不充分条件. (3)函数f(x)在一闭区间上的最大值是此函数在此区间上的极大值与其端点函数值中的最大值,函数f(x)在一闭区间上的最小值是此函数在此区间上的极小值与其端点函数值中的最小值. 提炼3 函数最值的判别方法 (1)求函数f(x)在闭区间[a,b]上最值的关键是求出f′(x)=0的根的函数值,再与f(a),f(b)作比较,其中最大的一个是最大值,最小的一个是最小值. (2)求函数f(x)在非闭区间上的最值,只需利用导数法判断函数f(x)的单调性 ,即可得结论. 回访1 导数与函数的单调性 1.(2016·全国乙卷)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( ) A.[-1,1] B. C. D. C [取a=-1,则f(x)=x-sin 2x-sin x,f′(x)=1-cos 2x-cos x,但f′(0)=1--1=-<0,不具备在(-∞,+∞)单调递增的条件,故排除A,B,D.故选C.] 2.(2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞) A [设y=g(x)=(x≠0),则g′(x)=,当x>0时,xf′(x)-f(x)<0, ∴g′(x)<0,∴g(x)在(0,+∞)上为减函数,且g(1)=f(1)=-f(-1)=0. ∵f(x)为奇函数,∴g(x)为偶函数, ∴g(x)的图象的示意图如图所示. 当x>0,g(x)>0时,f(x)>0,0查看更多