- 2021-06-23 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
专题6-3 等比数列及其前n项和(测)-2018年高考数学一轮复习讲练测(浙江版)
2018年高考数学讲练测【新课标版理】【测】第六章 数列 第03节 等比数列及其前n项和 一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.) 1.【2018届安徽省合肥一中、马鞍山二中等六校教育研究会高三上第一次联考】已知等比数列满足,则的值为( ) A. 1 B. 2 C. D. 【答案】A 2.已知等比数列的前项和为.若,则( ) A. B. C. D. 【答案】D 【解析】由已知可得,解之得,应选D。 3. 【2017届山东省济宁市高三3月模拟考试】设,“, , 为等比数列”是“”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B 【解析】由题意得, , , 为等比数列,因此 , , 为等比数列,所以“, , 为等比数列”是“”的必要不充分条件,故选B. 4. 【原创题】设等比数列的前项和为,满足,且,,则( ) A. B. C. D. 【答案】A 【解析】由已知得,,又,则,故,,,所以. 5. 【改编题】函数图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为公比的数是( ) A. B. C.1 D. 【答案】A 6.【2018届广西钦州市高三上第一次检测】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为( )(结果保留一位小数.参考数据:,)( ) A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日 【答案】C 【解析】设蒲(水生植物名)的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞(植物名)的长度组成等比数列{bn},其b1=1,公比为2, 其前n项和为Bn.则A,Bn=, 由题意可得:,化为:2n+=7, 解得2n=6,2n=1(舍去). ∴n==1+=≈2.6. ∴估计2.6日蒲、莞长度相等, 故答案为:2.6. 7. 【2017届浙江台州中学高三10月月考】等比数列中,已知对任意正整数,,则等于( ) A. B. C. D. 【答案】C. 8.【2018届河北省衡水中学高三上学期二调】设正项等比数列的前项和为,且,若, ,则( ) A. 63或120 B. 256 C. 120 D. 63 【答案】C 【解析】由题意得,解得或.又 所以数列为递减数列,故.设等比数列的公比为,则,因为数列为正项数列,故,从而,所以.选C. 9.设等比数列的前项和为,若,,,则( ) A. B. C. D. 【答案】C 【解析】由已知得,,,故公比,又,故,又,代入可求得. 10.【2017届湖北武汉市蔡甸区汉阳一中高三第三次模拟】已知成等差数列, 成等比数列,则的值为 A. B. C. D. 【答案】C 11.【2018届河南省洛阳市高三上尖子生第一次联考】在等比数列中, , 是方程的根,则的值为( ) A. B. C. D. 或 【答案】B 【解析】由, 是方程的根,可得: ,显然两根同为负值,可知各项均为负值; . 故选:B. 12.【2017年福建省三明市5月质量检查】已知数列的前项和为,且,,则( ) A. B. C. D. 【答案】A 二、 填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【2017届浙江省丽水市高三下联考】已知数列是公比为的单调递增的等比数列,且, , __________; _________. 【答案】 【解析】,且, 解得a1=1,q=2. 14.【2017届浙江省ZDB联盟高三一模】已知是等比数列,且, ,则__________, 的最大值为__________. 【答案】 5 【解析】 ,即的最大值为. 15.【2017届浙江省台州市高三上期末】已知公差不为0的等差数列{an},若a2+a4=10 且a1,a2,a5成等比数列,则a1=__________.an=_________. 【答案】 1, 2n-1. 16.已知满足,类比课本中推导等比数列前项和公式的方法,可求得___________. 【答案】. 【解析】因为, 所以, 两式相加可得, 又因为, 所以. 二、 解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【2017届浙江省丽水市高三下测试】已知数列的相邻两项是关于的方程的两实根,且. (1)求的值; (2)求证:数列是等比数列,并求数列的通项公式. 【答案】(1), , (2) 【解析】试题分析: (1)由题中所给的递推关系可得, , . (2)由题意可得数列是首项为,公比为-1的等比数列.则. (2)∵, 故数列是首项为,公比为-1的等比数列. 所以,即. 18.【改编题】已知等比数列{}的公比为,且满足,++=,=. (1)求数列{}的通项公式; (2)记数列{}的前项和为 ,求 【答案】(1)=();(2)= . 【解析】(1)由=,及等比数列性质得=,即=, 由++=得+= 由得所以,即 解得=,或= 由知,{}是递减数列,故=舍去,=,又由=,得=, 故数列{}的通项公式为=() ………………6分 (2)由(1)知=,所以=+ ① =+++…++ ② ①-② 得:=++- =(++)- =-=-,所以= . 19.【2017全国卷2】已知等差数列的前项和为,等比数列的前项和为,,,. (1)若,求的通项公式; (2)若,求. 【答案】(1).(2)或. (2)由(1)及已知得,解得或. 所以或. 20.已知数列的前项和为,,,. (Ⅰ) 求证:数列是等比数列; (Ⅱ) 设数列的前项和为,,点在直线上,若不等式 对于恒成立,求实数的最大值. 【答案】(Ⅰ)详见解析; (Ⅱ) . 【解析】 (Ⅱ)由(Ⅰ)得,因为点在直线上,所以, 故是以为首项,为公差的等差数列, 则,所以, 当时,, 因为满足该式,所以 所以不等式, 即为, 令,则, 两式相减得, 所以 由恒成立,即恒成立, 又, 故当时,单调递减;当时,; 当时,单调递增;当时,; 则的最小值为,所以实数的最大值是 21.【2017届安徽省亳州市二中高三下检测】已知各项均不相等的等差数列满足,且成等比数列. (Ⅰ)求的通项公式; (Ⅱ)若,求数列的前项和. 【答案】(Ⅰ);(Ⅱ)当为偶数时, .当为奇数时, . (Ⅱ)由,可得 , 当为偶数时, . 当为奇数时, 为偶数,于是 22.设数列的前项和为,若存在非零常数,使对任意都有成立,则称数列为“和比数列”. (1)若数列是首项为,公比为的等比数列,判断数列是否为“和比数列”; (2)设数列是首项为,且各项互不相等的等差数列,若数列是“和比数列”,求数列的 通项公式. 【答案】(1)是,证明见解析;(2) 试题解析:(1)由已知,,则. 设数列的前项和为,则,. 所以,故数列是“和比数列”. (2)设数列的公差为(),前项和为,则, ,所以 因为是“和比数列”,则存在非零常数,使恒成立. 即,即恒成立. 所以因为,则, 所以数列的通项公式是 查看更多