- 2021-06-23 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学复习专题练习第2讲 圆与圆的方程
第2讲 圆与圆的方程 一、选择题 1.圆心在y轴上,半径为1,且过点(1,2)的圆的方程是( ) A.x2+(y-2)2=1 B.x2+(y+2)2=1[来XK] C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 解析 设圆的圆心C(0,b),则=1, ∴b=2.∴圆的标准方程是x2+(y-2)2=1. 答案 A 2.若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为 ( ). A.-1 B.1 C.3 D.-3 解析 化圆为标准形式(x+1)2+(y-2)2=5,圆心为(-1,2).∵直线过圆心,∴3×(-1)+2+a=0,∴a=1. 答案 B 3.设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若00,所以原点在圆外. 答案 B 4. 若圆x2+y2-2x+6y+5a=0,关于直线y=x+2b成轴对称图形,则a-b的取值范围是( ) A.(-∞,4) B.(-∞,0) C.(-4,+∞) D.(4,+∞) 解析 将圆的方程变形为(x-1)2+(y+3)2=10-5a,可知,圆心为(1,-3),且10-5a>0,∴a<2,由于圆关于直线y=x+2b对称,∴圆心在直线y=x+2b上,即-3=1+2b,∴b=-2, ∴a-b<4. 答案 A 5. 已知圆心在x轴上,半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是( ) A.(x-)2+y2=5 B.(x+)2+y2=5 C.(x+)2+y2=5 D.x2+(y+)2=5 解析 设圆心为(a,0)(a<0),则=, ∴a=-,∴圆O的方程为(x+)2+y2=5,故选C. 答案 C 6.圆心为C的圆与直线l:x+2y-3=0交于P、Q两点,O为坐标原点,且满足·=0,则圆C的方程为( ) A.2+(y-3)2= B.2+(y+3)2= C.2+(y-3)2= D.2+(y+3)2= 解析 ∵圆心为C, ∴设圆的方程为2+(y-3)2=r2, 在所给的四个选项中只有一个方程所写的圆心是正确的. 即2+(y-3)2=,故选C. 答案 C 二、填空题 7.以A(1,3)和B(3,5)为直径两端点的圆的标准方程为________. 解析 由中点坐标公式得AB的中点即圆的圆心坐标为(2,4),再由两点间的距离公式得圆的半径为=,故圆的标准方程为(x-2)2+(y-4)2=2. 答案 (x-2)2+(y-4)2=2 8. 已知x,y满足x2+y2=1,则的最小值为________. 解析 表示圆上的点P(x,y)与点Q(1,2)连线的斜率,所以,的最小值是直线PQ与圆相切时的斜率.设直线PQ的方程为y-2=k(x-1)即kx-y+2-k=0,由=1得k=,结合图形可知,≥,∴最小值为.[ 答案 9.圆心在原点且圆周被直线3x+4y+15=0分成1∶2两部分的圆的方程为________. 解析 如图,因为圆周被直线3x+4y+15=0分成1∶2两部分,所以∠AOB=120°.而圆心到直线3x+4y+15=0的距离d==3,在△AOB中,可求得OA=6.所以所求圆的方程为x2+y2=36. 答案 x2+y2=36 10.已知圆C:(x-3)2+(y-4)2=1,点A(-1,0),B(1,0),点P是圆上的动点,则d=|PA|2+|PB|2的最大值为________,最小值为________. 解析 设点P(x0,y0),则d=(x0+1)2+y+(x0-1)2+y=2(x+y)+2,欲求d的最值,只需求u=x+y的最值,即求圆C上的点到原点的距离平方的最值.圆C上的点到原点的距离的最大值为6,最小值为4,故d的最大值为74,最小值为34. 答案 74 34 三、解答题 11.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|. (1)若点P的轨迹为曲线C,求此曲线的方程; (2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值. 解 (1)设点P的坐标为(x,y), 则=2. 化简可得(x-5)2+y2=16,此即为所求. (2)曲线C是以点(5,0)为圆心,4为半径的圆,如图,由直线l2 是此圆的切线,连接CQ,则|QM|==, 当CQ⊥l1时,|CQ|取最小值, |CQ|==4, 此时|QM|的最小值为=4. 12.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4. (1)求直线CD的方程; (2)求圆P的方程. 解 (1)直线AB的斜率k=1,AB的中点坐标为(1,2), ∴直线CD的方程为y-2=-(x-1),即x+y-3=0. (2)设圆心P(a,b),则由P在CD上得a+b-3=0. ① 又直径|CD|=4,∴|PA|=2, ∴(a+1)2+b2=40, ② 由①②解得或 ∴圆心P(-3,6)或P(5,-2), ∴圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40. 13.已知圆M过两点C(1,-1),D(-1,1),且圆心M在x+y-2=0上. (1)求圆M的方程; (2)设P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值. 解 (1)设圆M的方程为(x-a)2+(y-b)2=r2(r>0), 根据题意得: 解得a=b=1,r=2, 故所求圆M的方程为(x-1)2+(y-1)2=4. (2)因为四边形PAMB的面积 S=S△PAM+S△PBM=|AM|·|PA|+|BM|·|PB|, 又|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|, 而|PA|==, 即S=2. 因此要求S的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, 所以|PM|min==3, 所以四边形PAMB面积的最小值为 S=2=2=2. 14.已知圆C过点P(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称. (1)求圆C的方程; (2)设Q为圆C上的一个动点,求·的最小值. 解 (1)设圆心C(a,b),则解得 则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2, 故圆C的方程为x2+y2=2. (2)设Q(x,y),则x2+y2=2,且·=(x-1,y-1)·(x+2,y+2)=x2+y2+x+y-4=x+y-2, 令x=cos θ,y=sin θ, ∴·=x+y-2=(sin θ+cos θ)-2 =2sin-2, 所以·的最小值为-4. 查看更多