专题19+概率、随机变量及其分布列(仿真押题)-2017年高考数学(理)命题猜想与仿真押题
专题19 概率、随机变量及其分布列(仿真押题)
2017年高考数学(理)命题猜想与仿真押题
1.已知袋子中装有大小相同的6个小球,其中有2个红球、4个白球.现从中随机摸出3个小球,则至少有2个白球的概率为( )
A. B. C. D.
解析:所求问题有两种情况:1红2白或3白,则所求概率P==.
答案:C
2.某企业的4名职工参加职业技能考核,每名职工均可从4个备选考核项目中任意抽取一个参加考核,则恰有一个项目未被抽中的概率为( )
A. B.
C. D.
解析:由题意得,所有的基本事件总数为44=256,若恰有一个项目未被抽中,则说明4名职工总共抽取了3个项目,符合题意的基本事件数为C·C·C·A=144,故所求概率P==,故选A.
答案:A
3.在区间0,1]上随机取一个数x,则事件“log0.5(4x-3)≥0”发生的概率为( )
A. B.
C. D.
解析:因为log0.5(4x-3)≥0,所以0<4x-3≤1,即
20,∴x2-12x+20<0,解得2300
空气质量
优
良
轻度污染
中度污染
重度污染
严重污染
天数
6
14
18
27
20
15
(1)若本次抽取的样本数据有30天是在供暖季,其中有8天为严重污染.根据提供的统计数据,完成下面的2×2列联表,并判断是否有95%的把握认为“该城市本年的空气严重污染与供暖有关”?
非严重污染
严重污染
总计
供暖季
非供暖季
总计
100
(2)已知某企业每天的经济损失y(单位:元)与空气质量指数x的关系式为y=,试估计该企业一个月(按30天计算)的经济损失的数学期望.
附:K2=.
P(K2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
解析:(1)根据题设中的数据得到如下2×2列联表:
非严重污染
严重污染
总计
供暖季
22
8
30
非供暖季
63
7
70
总计
85
15
100
将2×2列联表中的数据代入公式计算,得K2=≈4.575.
因为4.575>3.841,
所以有95%的把握认为“该城市本年的空气严重污染与供暖有关”.
20.某园林基地培育了一种新观赏植物,经过一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为n)进行统计,按照50,60),60,70),70,80),80,90), 90,100]的分组作出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在50,60),90,100]的数据).
(1)求样本容量n和频率分布直方图中的x、y的值;
(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取2株,求所抽取的2株中至少有一株高度在90,100]内的概率.
解析:(1)由题意可知,样本容量n==50,y==0.004,
x=0.100-0.004-0.010-0.016-0.040=0.030.
(2)由题意可知,高度在80,90)内的株数为5,记这5株分别为a1,a2,a3,a4,a5,高度在90,100]内的株数为2,记这2株分别为b1,b2.
抽取2株的所有情况有21种,分别为:
(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4),(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2).
其中2株的高度都不在90,100]内的情况有10种,分别为:
(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5).
∴所抽取的2株中至少有一株高度在90,100]内的概率P=1-=.
21.对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(百元)
15,25)
25,35)
35,45)
45,55)
55,65)
65,75]
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
(1)根据以上统计数据填写下面2×2列联表,并回答是否有95%的把握认为月收入以55百元为分界点对“楼市限购政策”的态度有差异?
月收入低于55百元人数
月收入不低于55百元人数
合计
赞成
a=
b=
不赞成
c=
d=
合计
(2)若从月收入在55,65)的被调查对象中随机选取2人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
参考值表:
P(K2≥k0)
0.050
0.010
0.001
k0
3.841
6.635
10.828