- 2021-06-22 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019学年高二数学下学期期末考试试题 文 新人教版
2019学年度下学期高二年级数学学科(文)期末考试试题 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求. (1)已知集合,若,则的值为 A. B. C. D. (2)不等式的解集是,则不等式的解集是 A. B. C. D . (3)设>l,则的大小关系是 A. B. C. D. (4)下列函数中,在内有零点且单调递增的是 A. B. C. D. (5)在等差数列中,是方程的两根,则等于 . A. B. C.- D.- (6)在样本的频率分布直方图中,共有8个小长方形,若最后一个小长方形的面积等于其它7个小长方形的面积和的,且样本容量为200,则第8组的频数为 A. 40 B. 0.2 C.50 D.0.25 (7)将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数和不小于10的概率为 A. B. C. D. - 8 - (8)当满足时,则的最大值是 A.1 B.2 C.5 D.6 (9)下面的程序框图给出了计算数列{}的前8项和S的算法,算法执行完毕后,输出的S为 A.8 B.63 C.92 D.129 10.已知直线,圆,那么圆上到的距离为的点一共有( )个. A. B. C. D. 11.已知平面向量、都是单位向量,若,则与的夹角等于 A. B. C. D. 12.定义在R上的函数f(x)的导函数为,若对任意实数x,有f(x)>,且f(x)+2017为奇函数,则不等式f(x)+2017ex<0的解集是 A. (0,+∞) B. C. D. 第 Ⅱ 卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题5分,共20分. (13)已知直线与圆相切,则实数a的值 为 . - 8 - (14)函数的最小值为 . (15)已知, ,则的值为 . (16)已知在公比的等比数列中,,,数列满足,则数列的前10项和 . 三、解答题:本大题共6小题,共70分. (17)(本小题满分12分) 已知函数 (I)若函数在上不具有单调性,求实数的取值范围; (II)若 设,当时,试比较的大小. (18)(本小题满分12分) 已知函数的最小正周期为. (I)求的值; (II)在中,角A,B,C成等差数列,求此时的值域. (19)(本小题满分12分) 如图,已知四棱锥P-ABCD,底面,且底面ABCD是边长为2的正方D 形,M、N分别为PB、PC的中点. (Ⅰ)证明:MN//平面PAD; (Ⅱ)若PA与平面ABCD所成的角为,求四棱 锥P-ABCD的体积V. (20)(本小题满分12分) 已知函数与轴交于两点,与轴交于点,圆心为的圆恰好经过三点. (I)求圆的方程; - 8 - (II)若圆与直线交于两点,且线段,求的值. (21)(本小题满分12分) 已知函数. (I)设 是的极值点.求实数的值,并求函数的单调区间; (II)证明:当 时,. 请考生在第22~23题中任选一个题作答,如果多做,则按所做的第一题计分,作答时请写清题号 (22)(本小题满分10分) 在极坐标系和直角坐标系中,极点与直角坐标系的原点重合,极轴与轴的正半轴重合,已知直线(为参数) ,圆 . (Ⅰ)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程; (Ⅱ)已知是直线上一点,是圆上一点,求的最小值. (23)(本小题满分10分) 已知函数. (I)若不等式的解集为,求实数的值; (II)在(I)的条件下,若不等式对一切实数恒成立,求实数的取值范围. - 8 - 吉林省实验中学2017---2018学年度下学期 高二年级数学学科(文)期末考试试题答案 一、选择题:本大题共12小题,每小题5分,共60分。 1 2 3 4 5 6 7 8 9 10 11 12 A C A B B A D C C C C A 二、填空题:本大题共4小题,每小题5分,共20分。 (13) 或8; (14) 4 ; (15); (16)55. 三、解答题: (17) 解:(I)∵抛物线开口向上,对称轴为, ∴函数在单调递减,在单调递增, ∵函数在上不单调 ∴,得,∴实数的取值范围为 (II) ∵,∴ ∴实数的值为. ∵, , ∴当时,,, ∴. (18)解:(I), 因为函数的周期为,所以. - 8 - (II)角A,B,C成等差数列, , , , 所以值域为. (19) 解:(Ⅰ)证明:因为M、N分别是棱PB、PC中点,所以MN//BC, 又 ABCD是正方形,所以AD// BC,于是MN//AD. (II)由,知PA与平面ABCD所成的角为, ∴ 在中,,得, 故四棱锥P-ABCD的体积. (20)解:(I)由题意与坐标轴交点为 , 设圆的方程为: , 代入点,得圆的方程为:. (II)由题意,设圆心到直线距离为,则, 即:得:. - 8 - (21)解: (I)f(x)的定义域为 ,f ′(x)=. 由题设知,f ′(2)=0,所以. 从而 , . 当0查看更多