- 2021-06-22 发布 |
- 37.5 KB |
- 41页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
专题14 空间向量与立体几何(命题猜想)-2017年高考数学(理)命题猜想与仿真押题
专题14 空间向量与立体几何(命题猜想) 2017年高考数学(理)命题猜想与仿真押题 【考向解读】 以空间几何体为载体考查空间角是高考命题的重点,与空间线面关系的证明相结合,热点为二面角的求解,均以解答的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上. 【命题热点突破一】 利用向量证明平行与垂直 设直线l的方向向量为a=(a1,b1,c1),平面α、β的法向量分别为μ=(a2,b2,c2),v=(a3,b3,c3)则有: (1)线面平行 l∥α⇔a⊥μ⇔a·μ=0⇔a1a2+b1b2+c1c2=0. (2)线面垂直 l⊥α⇔a∥μ⇔a=kμ⇔a1=ka2,b1=kb2,c1=kc2. (3)面面平行 α∥β⇔μ∥v⇔μ=λv⇔a2=λa3,b2=λb3,c2=λc3. (4)面面垂直 α⊥β⇔μ⊥v⇔μ·v=0⇔a2a3+b2b3+c2c3=0. 例1、【2016高考浙江理数】(本题满分15分)如图,在三棱台中,平面平面 ,,BE=EF=FC=1,BC=2,AC=3. (I)求证:EF⊥平面ACFD; (II)求二面角B-AD-F的平面角的余弦值. 【答案】(I)证明见解析;(II). 【解析】(Ⅰ)延长,,相交于一点,如图所示. 因为平面平面,且,所以平面,因此. 又因为,,, 所以为等边三角形,且为的中点,则. 所以平面. 方法二:如图,延长,,相交于一点,则为等边三角形. 取的中点,则,又平面平面,所以,平面. 以点为原点,分别以射线,的方向为,的正方向,建立空间直角坐标系. 由题意得,,,,,. 因此,,,. 设平面的法向量为,平面的法向量为. 由,得,取; 由,得,取. 于是,. 所以,二面角的平面角的余弦值为. 【变式探究】如图,在直三棱柱ADE—BCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点.运用向量方法证明: (1)OM∥平面BCF; (2)平面MDF⊥平面EFCD. 证明 方法一 由题意,得AB,AD,AE两两垂直,以A为原点建立如图所示的空间直角坐标系. 设正方形边长为1,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0), F(1,0,1),M,O. (1)=,=(-1,0,0), ∴·=0, ∴⊥. ∵棱柱ADE—BCF是直三棱柱, ∴AB⊥平面BCF,∴是平面BCF的一个法向量, 且OM⊄平面BCF,∴OM∥平面BCF. (2)设平面MDF与平面EFCD的一个法向量分别为 n1=(x1,y1,z1),n2=(x2,y2,z2). ∵=(1,-1,1),=,=(1,0,0),=(0,-1,1), 由 得解得 令x1=1,则n1=. 同理可得n2=(0,1,1). ∵n1·n2=0,∴平面MDF⊥平面EFCD. (2)由题意知,BF,BC,BA两两垂直, ∵=,=-, ∴·=·=0, ·=·(-) =-2+2=0. ∴OM⊥CD,OM⊥FC,又CD∩FC=C, ∴OM⊥平面EFCD. 又OM⊂平面MDF,∴平面MDF⊥平面EFCD. 思维升华 用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外. 【变式探究】 如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.求证: (1)DE∥平面ABC; (2)B1F⊥平面AEF. 证明 (1)如图建立空间直角坐标系A-xyz, 令AB=AA1=4, 则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4). 取AB中点为N,连接CN, 则N(2,0,0),C(0,4,0),D(2,0,2), ∴=(-2,4,0), =(-2,4,0), ∴=,∴DE∥NC, 又∵NC⊂平面ABC,DE⊄平面ABC. 故DE∥平面ABC. (2)=(-2,2,-4), =(2,-2,-2),=(2,2,0). ·=(-2)×2+2×(-2)+(-4)×(-2)=0, ·=(-2)×2+2×2+(-4)×0=0. ∴⊥,⊥,即B1F⊥EF,B1F⊥AF, 又∵AF∩FE=F,∴B1F⊥平面AEF. 【命题热点突破二】 利用空间向量求空间角 设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2).平面α,β的法向量分别为μ=(a3,b3,c3),v=(a4,b4,c4)(以下相同). (1)线线夹角 设l,m的夹角为θ(0≤θ≤),则 cosθ==. (2)线面夹角 设直线l与平面α的夹角为θ(0≤θ≤), 则sinθ==|cos〈a,μ〉|. (3)面面夹角 设平面α、β的夹角为θ(0≤θ<π), 则|cosθ|==|cos〈μ,v〉|. 例2、【2016高考新课标2理数】如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到位置,. (Ⅰ)证明:平面; (Ⅱ)求二面角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】 (Ⅱ)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系,则,,,,,,,.设是平面的法向量,则,即,所以可取.设是平面的法向量,则,即,所以可取.于是, .因此二面角 的正弦值是. 【变式探究】如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1. (1)求平面PAB与平面PCD所成二面角的余弦值; (2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长. 解 以{,,}为正交基底建立如图所示的空间直角坐标系Axyz,则各点的坐标为 B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2). (1)因为AD⊥平面PAB,所以是平面PAB的一个法向量,=(0,2,0). 因为=(1,1,-2),=(0,2,-2). 设平面PCD的法向量为m=(x,y,z), 则m·=0,m·=0, 即令y=1,解得z=1,x=1. 所以m=(1,1,1)是平面PCD的一个法向量. 从而cos〈,m〉==, 所以平面PAB与平面PCD所成二面角的余弦值为. (2)因为=(-1,0,2),设=λ=(-λ,0,2λ)(0≤λ≤1), 又=(0,-1,0),则=+=(-λ,-1,2λ), 又=(0,-2,2), 从而cos〈,〉==. 设1+2λ=t,t∈, 则cos2〈,〉==≤. 当且仅当t=,即λ=时,|cos〈,〉|的最大值为. 因为y=cosx在上是减函数,此时直线CQ与DP所成角取得最小值. 又因为BP==, 所以BQ=BP=. 【感悟提升】(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cosα=|cosβ|.②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.③直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化. 【变式探究】在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示. (1)求证:AB⊥CD; (2)若M为AD中点,求直线AD与平面MBC所成角的正弦值. (1)证明 ∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD, ∴AB⊥平面BCD. 又CD⊂平面BCD,∴AB⊥CD. (2)解 过点B在平面BCD内作BE⊥BD,如图. 由(1)知AB⊥平面BCD,BE⊂平面BCD,BD⊂平面BCD, ∴AB⊥BE,AB⊥BD. 以B为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系. 依题意,得B(0,0,0),C(1,1,0),D(0,1,0), A(0,0,1),M(0,,), 则=(1,1,0),=(0,,),=(0,1,-1). 设平面MBC的法向量n=(x0,y0,z0), 则即 取z0=1,得平面MBC的一个法向量n=(1,-1,1). 设直线AD与平面MBC所成角为θ, 则sinθ=|cos〈n,〉|==, 即直线AD与平面MBC所成角的正弦值为. 【命题热点突破三】 利用空间向量求解探索性问题 存在探索性问题的基本特征是要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.解决这类问题的基本策略是先假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论. 例3、【2016高考天津理数】(本小题满分13分) 如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2. (I)求证:EG∥平面ADF; (II)求二面角O-EF-C的正弦值; (III)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值. 【答案】(Ⅰ)详见解析(Ⅱ)(Ⅲ) 【解析】依题意,,如图,以为点,分别以的方向为轴,轴、轴的正方向建立空间直角坐标系,依题意可得,. (II)解:易证,为平面的一个法向量.依题意, .设为平面的法向量,则,即 .不妨设,可得. 因此有,于是,所以,二面角的正弦值为. (III)解:由,得.因为,所以,进而有,从而,因此.所以,直线和平面所成角的正弦值为. 【变式探究】如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点. (1)求证:A1B∥平面ADC1; (2)求二面角C1-AD-C的余弦值; (3)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置;若不存在,说明理由. (1)证明 连接A1C,交AC1于点O,连接OD. 由ABC-A1B1C1是直三棱柱,得四边形ACC1A1为矩形,O为A1C的中点. 又D为BC的中点, 所以OD为△A1BC的中位线, 所以A1B∥OD. 因为OD⊂平面ADC1,A1B⊄平面ADC1, 所以A1B∥平面ADC1. (2)解 由ABC-A1B1C1是直三棱柱,且∠ABC=90°,得BA,BC,BB1两两垂直. 以BC,BA,BB1所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系B-xyz. 设BA=2,则B(0,0,0),C(2,0,0),A(0,2,0),C1(2,0,1),D(1,0,0), 所以=(1,-2,0),1=(2,-2,1). 设平面ADC1的法向量为n=(x,y,z), 则有 所以取y=1,得n=(2,1,-2). 易知平面ADC的一个法向量为v=(0,0,1). 所以cos〈n,v〉==-. 因为二面角C1-AD-C是锐二面角, 所以二面角C1-AD-C的余弦值为. 【感悟提升】空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法. 【举一反三】如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点. (1)求异面直线NE与AM所成角的余弦值; (2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由. 解 (1)如图,以D为坐标原点,DA,DC,DM所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,则D(0,0,0),A(1,0,0),M(0,0,1),C(0,1,0),B(1,1,0), N(1,1,1),E(,1,0),所以=(-,0,-1), =(-1,0,1). 因为|cos〈,〉|===, 所以异面直线NE与AM所成角的余弦值为. (2)假设在线段AN上存在点S,使得ES⊥平面AMN. 因为=(0,1,1), 可设=λ=(0,λ,λ)(0≤λ≤1), 又=(,-1,0), 所以=+=(,λ-1,λ). 由ES⊥平面AMN, 得 即 故λ=,此时=(0,,),||=. 经检验,当AS=时,ES⊥平面AMN. 故线段AN上存在点S, 使得ES⊥平面AMN,此时AS=. 高考押题精练 (1)证明 连接AC,∵四边形ABCD是矩形,且Q为BD的中点, ∴Q为AC的中点, 又在△AEC中,P为AE的中点,∴PQ∥EC, ∵EC⊂面BCE,PQ⊄面BCE,∴PQ∥平面BCE. (2)解 如图,取EF的中点M,则AF⊥AM,以A为坐标原点,以AM,AF,AD所在直线分别为x,y,z轴建立空间直角坐标系. 则A(0,0,0),D(0,0,1),M(2,0,0),F(0,2,0). 可得=(2,0,0),=(-2,2,0),=(0,2,-1). 设平面DEF的法向量为n=(x,y,z),则 故即 令x=1,则y=1,z=2, 故n=(1,1,2)是平面DEF的一个法向量. ∵AM⊥面ADF,∴为平面ADF的一个法向量. ∴cos〈n,〉===. 由图可知所求二面角为锐角, ∴二面角A-DF-E的余弦值为. 【高考真题解读】 15.【2016高考新课标2理数】如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到位置,. (Ⅰ)证明:平面; (Ⅱ)求二面角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ). (Ⅱ)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系,则,,,,,,,.设是平面的法向量,则,即,所以可取.设是平面的法向量,则 ,即,所以可取.于是, .因此二面角的正弦值是. 16.【2016高考山东理数】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线. (I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC; (II)已知EF=FB=AC=,AB=BC.求二面角的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 【解析】 (II)解法一: 连接,则平面, 又且是圆的直径,所以 以为坐标原点,建立如图所示的空间直角坐标系, 由题意得,,过点作于点, 所以 可得 故. 设是平面的一个法向量. 由 可得 可得平面的一个法向量 因为平面的一个法向量 所以. 所以二面角的余弦值为. 解法二: 连接,过点作于点, 则有, 又平面, 所以FM⊥平面ABC, 可得 过点作于点,连接, 可得, 从而为二面角的平面角. 又,是圆的直径, 所以 从而,可得 所以二面角的余弦值为. 17.【2016高考江苏卷】(本小题满分14分) 如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且 ,. 求证:(1)直线DE∥平面A1C1F; (2)平面B1DE⊥平面A1C1F. 【答案】(1)详见解析(2)详见解析 (2)在直三棱柱中, 因为平面,所以 又因为 所以平面 因为平面,所以 又因为 所以 因为直线,所以 18.【2016高考天津理数】(本小题满分13分) 如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2. (I)求证:EG∥平面ADF; (II)求二面角O-EF-C的正弦值; (III)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值. 【答案】(Ⅰ)详见解析(Ⅱ)(Ⅲ) 【解析】依题意,,如图,以为点,分别以的方向为轴,轴、轴的正方向建立空间直角坐标系,依题意可得,. (I)证明:依题意,.设为平面 的法向量,则,即 .不妨设,可得,又,可得,又因为直线,所以. (II)解:易证,为平面的一个法向量.依题意,.设为平面的法向量,则,即 .不妨设,可得. 因此有,于是,所以,二面角的正弦值为. 19.【2016年高考北京理数】(本小题14分) 如图,在四棱锥中,平面平面,,,, ,,. (1)求证:平面; (2)求直线与平面所成角的正弦值; (3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由. 【答案】(1)见解析;(2);(3)存在, 【解析】(1)因为平面平面,, 所以平面,所以, 又因为,所以平面; (2)取的中点,连结,, 因为,所以. 又因为平面,平面平面, 所以平面. 因为平面,所以. 因为,所以. 如图建立空间直角坐标系,由题意得, . 设平面的法向量为,则 即 令,则. 所以. 又,所以. 所以直线与平面所成角的正弦值为. (3)设是棱上一点,则存在使得. 因此点. 因为平面,所以平面当且仅当, 即,解得. 所以在棱上存在点使得平面,此时. 20.【2016高考新课标3理数】如图,四棱锥中,地面,,,,为线段上一点,,为的中点. (I)证明平面; (II)求直线与平面所成角的正弦值. 【答案】(Ⅰ)见解析;(Ⅱ). 【解析】(Ⅰ)由已知得,取的中点,连接,由为中点知,. 又,故,四边形为平行四边形,于是. 因为平面,平面,所以平面. (Ⅱ)取的中点,连结,由得,从而,且. 以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系, 由题意知,,,,, ,,. 设为平面的法向量,则,即,可取, 于是. 21.【2016高考浙江理数】(本题满分15分)如图,在三棱台中,平面平面 ,,BE=EF=FC=1,BC=2,AC=3. (I)求证:EF⊥平面ACFD; (II)求二面角B-AD-F的平面角的余弦值. 【答案】(I)证明见解析;(II). (Ⅱ)方法一:过点作于Q,连结. 因为平面,所以,则平面,所以. 所以是二面角的平面角. 在中,,,得. 在中,,,得. 所以二面角的平面角的余弦值为. 方法二:如图,延长,,相交于一点,则为等边三角形. 取的中点,则,又平面平面,所以,平面. 以点为原点,分别以射线,的方向为,的正方向,建立空间直角坐标系. 由题意得,,,,,. 因此,,,. 设平面的法向量为,平面的法向量为. 由,得,取; 由,得,取. 于是,. 所以,二面角的平面角的余弦值为. 22.【2016年高考四川理数】(本小题满分12分) 如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD,E为边AD的中点,异面直线PA与CD所成的角为90°. (Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由; (Ⅱ)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ). (Ⅱ)方法一: 由已知,CD⊥PA,CD⊥AD,PAAD=A, 所以CD⊥平面PAD. 从而CD⊥PD. 所以∠PDA是二面角P-CD-A的平面角. 所以∠PDA=45°. 设BC=1,则在Rt△PAD中,PA=AD=2. 过点A作AH⊥CE,交CE的延长线于点H,连接PH. 易知PA⊥平面ABCD, 从而PA⊥CE. 于是CE⊥平面PAH. 所以平面PCE⊥平面PAH. 过A作AQ⊥PH于Q,则AQ⊥平面PCE. 所以∠APH是PA与平面PCE所成的角. 在Rt△AEH中,∠AEH=45°,AE=1, 所以AH=. 在Rt△PAH中,PH== , 所以sin∠APH= =. 方法二: 由已知,CD⊥PA,CD⊥AD,PAAD=A, 所以CD⊥平面PAD. 于是CD⊥PD. 从而∠PDA是二面角P-CD-A的平面角. 所以∠PDA=45°. 由PA⊥AB,可得PA⊥平面ABCD. 设BC=1,则在Rt△PAD中,PA=AD=2. 作Ay⊥AD,以A为原点,以 ,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0), 所以=(1,0,-2),=(1,1,0),=(0,0,2) 设平面PCE的法向量为n=(x,y,z), 由 得 设x=2,解得n=(2,-2,1). 设直线PA与平面PCE所成角为α,则sinα= = . 所以直线PA与平面PCE所成角的正弦值为 . 23. 【2016高考上海理数】将边长为1的正方形(及其内部)绕的旋转一周形成圆柱,如图,长为,长为,其中与在平面的同侧。 (1)求三棱锥的体积; (2)求异面直线与所成的角的大小。 【答案】(1).(2). 【解析】(1)由题意可知,圆柱的高,底面半径. 由的长为,可知. , . (2)设过点的母线与下底面交于点,则, 所以或其补角为直线与所成的角. 由长为,可知, 又,所以, 从而为等边三角形,得. 因为平面,所以. 在中,因为,,,所以, 从而直线与所成的角的大小为. 24.【2016高考上海理数】如图,在正四棱柱中,底面的边长为3,与底面所成角的大小为,则该正四棱柱的高等于____________. 【答案】 【解析】由题意得. 1.(2015·陕西,18)如图1,在直角梯形 ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2. (1)证明:CD⊥平面A1OC; (2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值. (1)证明 在图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC, 图1 即在图2中,BE⊥OA1,BE⊥OC,且A1O∩OC=O, 从而BE⊥平面A1OC, 又在直角梯形ABCD中,AD∥BC,BC=AD,E为AD中点,所以BC綉ED, 所以四边形BCDE为平行四边形,故有CD∥BE, 所以CD⊥平面A1OC. (2)解 由已知,平面A1BE⊥平面BCDE, 又由(1)知,BE⊥OA1,BE⊥OC, 所以∠A1OC为二面角A1-BE-C的平面角, 所以∠A1OC=, 图2 如图,以O为原点,建立空间直角坐标系, 因为A1B=A1E=BC=ED=1,BC∥ED, 所以B,E, A1,C, 得=, =, ==(-,0,0), 设平面A1BC的法向量n1=(x1,y1,z1),平面A1CD的法向量n2=(x2,y2,z2),平面A1BC与平面A1CD夹角为θ, 则得取n1=(1,1,1); 得取n2=(0,1,1), 从而cos θ=|cos查看更多
- 当前文档收益归属上传用户