- 2021-06-21 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学复习专题练习第3讲 随机事件的概率
第3讲 随机事件的概率 一、选择题 1.某射手在一次射击中,射中10环,9环,8环的概率分别是0.20,0.30,0.10,则此射手在一次射击中不够8环的概率为( ) A.0.40 B.0.30 C.0.60 D.0.90 解析 依题意,射中8环及以上的概率为0.20+0.30+0.10=0.60,故不够8环的概率为1-0.60=0.40. 答案 A 2.从一箱产品中随机抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为( ). A.0.7 B.0.65 C.0.35 D.0.3 解析 由对立事件可得P=1-P(A)=0.35. 答案 C 3.盒中装有10个乒乓球,其中6个新球,4个旧球.不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为 ( ). A. B. C. D. 解析 第一次结果一定,盒中仅有9个乒乓球,5个新球4个旧球,所以第二次也取到新球的概率为. 答案 C 4.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)等于( ). A. B. C. D. 解析 法一 P(B|A)===. 法二 A包括的基本事件为{正,正},{正,反},AB包括的基本事件为{正,正},因此P(B|A)=. 答案 A 5.甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则下列说法正确的是( ) A.甲获胜的概率是 B.甲不输的概率是 C.乙输了的概率是 D.乙不输的概率是 解析 “甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率是P=1--=;设事件A为“甲不输”,则A是“甲胜”、“和棋”这两个互斥事件的并事件,所以P(A)=+=;乙输了即甲胜了,所以乙输了的概率为;乙不输的概率为1-=.[来源: 答案 A 6.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是 ( ). A. B. C. D. 解析 从装有3个红球、2个白球的袋中任取3个球通过列举知共有10个基本事件;所取的3个球中至少有1个白球的反面为“3个球均为红色”,有1个基本事件,所以所取的3个球中至少有1个白球的概率是1-=. 答案 D 二、填空题 7.对飞机连续射击两次,每次发射一枚炮弹.设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机}, 其中彼此互斥的事件是________,互为对立事件的是________. 解析 设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C=∅,B∩D=∅.故A与B,A与C,B与C,B与D为彼此互斥事件,而B∩D=∅,B+D=I,故B与D互为对立事件. 答案 A与B、A与C、B与C、B与D B与D 8.某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________. 解析 记“生产中出现甲级品、乙级品、丙级品”分别为事件A,B,C.则A,B,C彼此互斥,由题意可得P(B)=0.03,P(C)=0.01,所以P(A)=1-P(B+C)=1-P(B)-P(C)=1-0.03-0.01=0.96. 答案 0.96 9.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是________. 解析 从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与取2粒黑子的概率的和,即为+=. 答案 10.在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为________. 解析 设A={第一次取到不合格品},B={第二次取到不合格品},则P(AB)=,所以P(B|A)=== 答案 三、解答题 11.在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验. (1)求所选用的两种不同的添加剂的芳香度之和等于4的概率; (2)求所选用的两种不同的添加剂的芳香度之和不小于3的概率. 解 设“所选用的两种不同的添加剂的芳香度之和等于4”的事件为A,“所选用的两种不同的添加剂的芳香度之和不小于3”的事件为B. 从六种中随机选两种共有(0,1)、(0,2)、(0,3)、(0,4)、(0,5)、(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),15种. (1)“所选用的两种不同的添加剂的芳香度之和等于4”的取法有2种:(0,4)、(1,3),故P(A)=. (2)“所选用的两种不同的添加剂的芳香度之和等于1”的取法有1种:(0,1);“所选用的两种不同的添加剂的芳香度之和等于2”的取法有1种:(0,2),故P(B)=1-=. 12.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4,且只乘一种交通工具去开会. (1)求他乘火车或乘飞机去开会的概率; (2)求他不乘轮船去开会的概率; (3)如果他乘某种交通工具去开会的概率为0.5,请问他有可能是乘何种交通工具去开会的? 解 (1)记“他乘火车去开会”为事件A1,“他乘轮船去开会”为事件A2,“他乘汽车去开会”为事件A3,“他乘飞机去开会”为事件A4,这四个事件不可能同时发生,故它们是彼此互斥的.故P(A1+A4)=P(A1)+P(A4)=0.3+0.4=0.7. (2)设他不乘轮船去开会的概率为P, 则P=1-P(A2)=1-0.2=0.8. (3)由于0.3+0.2=0.5,0.1+0.4=0.5,1-(0.3+0.2)=0.5,1-(0.1+0.4)=0.5, 故他有可能乘火车或轮船去开会,也有可能乘汽车或飞机去开会. 13.黄种人群中各种血型的人所占的比如下表所示: 血型 A B AB O 该血型的人所占比/% 28 29 8 35 已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问: (1)任找一个人,其血可以输给小明的概率是多少? (2)任找一个人,其血不能输给小明的概率是多少? 解 (1)对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,它们是彼此互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35. 因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′+D′.根据互斥事件的概率加法公式,有P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64. (2)法一 由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36. 法二 因为事件“其血可以输给B型血的人”与事件“其血不能输给B型血的人”是对立事件,故由对立事件的概率公式,有P(])=1-P(B′+D′)=1-0.64=0.36. 即:任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36. 14.如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表: 时间(分钟) 10~20 20~30 30~40 40~50 50~60 L1的频率 0.1 0.2 0.3 0.2 0.2 L2的频率 0 0.1 0.4 0.4 0.1 现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站. (1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径? (2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望. 解 (1)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i=1,2. 用频率估计相应的概率可得 P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5, ∵P(A1)>P(A2),∴甲应选择L1; P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9, ∵P(B2)>P(B1),∴乙应选择L2. (2)A,B分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知P(A)=0.6,P(B)=0.9,又由题意知,A,B独立, ∴P(X=0)=P()=P()P()=0.4×0.1=0.04, P(X=1)=P(B+A)=P()P(B)+P(A)P() =0.4×0.9+0.6×0.1=0.42, P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54. ∴X的分布列为 X 0 1 2 P 0.04 0.42 0.54 ∴EX=0×0.04+1×0.42+2×0.54=1.5.查看更多