- 2021-06-21 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019高三数学(人教A版 文)一轮重点强化训练1 函数的图象与性质
重点强化训练(一) 函数的图象与性质 (对应学生用书第179页) A组 基础达标 (建议用时:30分钟) 一、选择题 1.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-)=( ) A.- B. C.2 D.-2 B [因为函数f(x)是偶函数,所以f(-)=f()=log2=.] 2.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=( ) A.-3 B.-1 C.1 D.3 C [用“-x”代替“x”,得f(-x)-g(-x)=(-x)3+(-x)2+1,化简得f(x)+g(x)=-x3+x2+1,令x=1,得f(1)+g(1)=1,故选C.] 3.函数f(x)=3x+x-2的零点所在的一个区间是( ) 【导学号:79170050】 A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) C [因为函数f(x)在定义域上单调递增, 又f(-2)=3-2-1-2=-<0, f(-1)=3-1--2=-<0, f(0)=30+0-2=-1<0, f(1)=3+-2=>0,所以f(0)f(1)<0, 所以函数f(x)的零点所在区间是(0,1).] 4.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+f(loga)≤2f(1),则a的取值范围是( ) A.[1,2] B. C. D.(0,2] C [∵f(loga)=f(-log2a)=f(log2a),∴原不等式可化为f(log2a)≤f(1).又∵f(x)在区间[0,+∞)上单调递增,∴0≤log2a≤1,即1≤a≤2.∵f(x)是偶函数,∴f(log2a)≤f(-1).又f(x)在区间(-∞,0]上单调递减,∴-1≤log2a≤0,∴≤a≤1.综上可知≤a≤2.] 5.(2017·陕西质检(二))若f(x)是定义在(-∞,+∞)上的偶函数,∀x1,x2∈[0,+∞)(x1≠x2),有<0,则( ) A.f(3)<f(1)<f(-2) B.f(1)<f(-2)<f(3) C.f(-2)<f(1)<f(3) D.f(3)<f(-2)<f(1) D [由对任意的x1,x2∈[0,+∞),<0得函数f(x)为[0,+∞ )上的减函数,又因为函数f(x)为偶函数,所以f(3)<f(2)=f(-2)<f(1),故选D.] 二、填空题 6.函数y=f(x)在x∈[-2,2]上的图象如图2所示,则当x∈[-2,2]时,f(x)+f(-x)=________. 图2 0 [由题图可知,函数f(x)为奇函数, 所以f(x)+f(-x)=0.] 7.若函数y=log2(ax2+2x+1)的值域为R,则a的取值范围为______________. 【导学号:79170051】 [0,1] [设f(x)=ax2+2x+1,由题意知,f(x)取遍所有的正实数.当a=0时,f(x)=2x+1符合条件;当a≠0时,则解得0<a≤1, 所以0≤a≤1.] 8.(2017·银川质检)已知y=f(x)是定义在R上的奇函数,在(0,+∞)上是增函数,且f(2)=0,则满足f(x-1)<0的x的取值范围是________. (-∞,-1)∪(1,3) [依题意当x∈(1,+∞)时,f(x-1)<0=f(2)的解集为x<3,即1<x<3;当x∈(-∞,1)时,f(x-1)<0=f(-2)的解集为x<-1,即x<-1.综上所述,满足f(x-1)<0的x的取值范围是(-∞,-1)∪(1,3).] 三、解答题 9.已知函数f(x)=2x,当m取何值时方程|f(x)-2|=m有一个解,两个解? [解] 令F(x)=|f(x)-2|=|2x-2|,G(x)=m,画出F(x)的图象如图所示. 由图象看出,当m=0或m≥2时,函数F(x)与G(x)的图象只有一个交点,原方程有一个解; 当0<m<2时,函数F(x)与G(x)的图象有两个交点,原方程有两个解. 10.函数f(x)=m+logax(a>0且a≠1)的图象过点(8,2)和(1,-1). (1)求函数f(x)的解析式; (2)令g(x)=2f(x)-f(x-1),求g(x)的最小值及取得最小值时x的值. 【导学号:79170052】 [解] (1)由得 3分 解得m=-1,a=2, 故函数解析式为f(x)=-1+log2x. 5分 (2)g(x)=2f(x)-f(x-1) =2(-1+log2x)-[-1+log2(x-1)] =log2-1(x>1). 7分 ∵==(x-1)++2≥2+2=4. 9分 当且仅当x-1=,即x=2时,等号成立. 而函数y=log2x在(0,+∞)上单调递增, 则log2-1≥log24-1=1, 故当x=2时,函数g(x)取得最小值1. 12分 B组 能力提升 (建议用时:15分钟) 1.(2017·东北三省四市二联)已知函数f(x)是定义在R上的奇函数,且在[0,+∞)上是增函数,则不等式<f(1)的解集为( ) A. B.(0,e) C. D.(e,+∞) C [f(x)为R上的奇函数,则f=f(-ln x)=-f(ln x),所以==|f(ln x)|,即原不等式可化为|f(ln x)|<f(1),所以-f(1)<f(ln x)<f(1),即f(-1)<f(ln x)<f(1).又由已知可得f(x)在R上单调递增,所以-1<ln x<1,解得<x<e,故选C.] 2.已知函数f(x),g(x)分别是定义在R上的偶函数与奇函数,且g(x)=f(x-1),则f(2 019)的值为________. 0 [g(-x)=f(-x-1),由f(x),g(x)分别是偶函数与奇函数,得g(x)=-f(x+1),∴f(x-1)=-f(x+1),即f(x+2)=-f(x),∴f(x+4)=f(x),故函数f(x )是以4为周期的周期函数,则 f(2 019)=f(505×4-1)=f(-1)=g(0)=0.] 3.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2). (1)求f(1)的值; (2)判断f(x)的奇偶性并证明你的结论; (3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围. 【导学号:79170053】 [解] (1)∵对于任意x1,x2∈D, 有f(x1·x2)=f(x1)+f(x2), ∴令x1=x2=1,得f(1)=2f(1), ∴f(1)=0. 3分 (2)f(x)为偶函数. 4分 证明如下:令x1=x2=-1, 有f(1)=f(-1)+f(-1), ∴f(-1)=f(1)=0. 令x1=-1,x2=x有f(-x)=f(-1)+f(x), ∴f(-x)=f(x), ∴f(x)为偶函数. 7分 (3)依题设有f(4×4)=f(4)+f(4)=2, 由(2)知,f(x)是偶函数, ∴f(x-1)<2⇔f(|x-1|)查看更多
相关文章
- 当前文档收益归属上传用户