- 2021-06-20 发布 |
- 37.5 KB |
- 7页
![](https://data.61taotao.com/file-convert/2020/10/19/20/45/06696a86626fdf2c3add2cb4d0781ca6/img/1.jpg)
![](https://data.61taotao.com/file-convert/2020/10/19/20/45/06696a86626fdf2c3add2cb4d0781ca6/img/2.jpg)
![](https://data.61taotao.com/file-convert/2020/10/19/20/45/06696a86626fdf2c3add2cb4d0781ca6/img/3.jpg)
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学复习课时提能演练(二十三) 3_7
课时提能演练(二十三) (45分钟 100分) 一、选择题(每小题6分,共36分) 1.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=( ) (A) (B)2 (C)4 (D)不确定 2.在△ABC中,a,b,c分别是A,B,C的对边长,若<0,则△ABC( ) (A)一定是锐角三角形 (B)一定是直角三角形 (C)一定是钝角三角形 (D)是锐角或钝角三角形 3.在△ABC中,已知a=,b=2,B=45°,则角A=( ) (A)30°或150° (B)60°或120° (C)60° (D)30° 4.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) (A)90° (B)120° (C)135° (D)150° 5.(2012·许昌模拟)在△ABC中,A=120°,b=1,面积为,则 =( ) 6.(易错题)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=bc,sinC=2sinB,则A=( ) (A)30° (B)60° (C)120° (D)150° 二、填空题(每小题6分,共18分) 7.(2012·郑州模拟)锐角△ABC中,角A、B、C所对的边分别为a、b、c,C=2A,的取值范围是_______. 8.(2012·漳州模拟)在三角形ABC中,若那么∠C=____. 9.在△ABC中,A=30°,AB=2,BC=1,则△ABC的面积等于________. 三、解答题(每小题15分,共30分) 10.(2011·安徽高考)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,1+2cos(B+C)=0,求边BC上的高. 11.(预测题)设△ABC的内角A、B、C所对的边分别为a、b、c.已知a=3,B=, (1)求△ABC的周长; (2)求sin2A的值. 【探究创新】 (16分)已知函数f(x)=cos(2x+)+sin2x (1)求函数f(x)的单调递减区间及最小正周期; (2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=,cosB= 求b. 答案解析 1.【解析】选A.由已知及正弦定理得=2, a=2sinA=2sin60°=,故选A. 2.【解析】选C.由已知及余弦定理得cosC<0,C是钝角,故选C. 3.【解析】选D.由正弦定理得,又因为b>a,故A=30°. 4.【解析】选B.设三边长为5x,7x,8x,最大的角为C,最小的角为A. 由余弦定理得:所以B=60°,所以A+C=180°-60°=120°. 5.【解题指南】先根据三角形的面积公式求出边AB的长,再由余弦定理可得边BC的长,最终根据正弦定理得解. 【解析】选C.∵A=120°,∴sinA=, S=×1×AB×sinA=,∴AB=4. 根据余弦定理可得, BC2=AC2+AB2-2AC·ABcosA=21, ∴BC=. 根据正弦定理可知: 故选C. 6.【解题指南】由题目中已知等式的形式,利用正、余弦定理求解. 【解析】选A.由及sinC=2sinB, 得c=2b, ∴cosA= ∵A为△ABC的内角,∴A=30°. 7.【解析】锐角△ABC中,角A、B、C所对的边分别为a、b、c,C=2A, ∴0<2A<,且<3A<π. 由正弦定理可得=2cosA, ∴即<<. 答案:() 8.【解析】由已知 又∠C为△ABC内角, ∴∠C= 答案: 9.【解析】由余弦定理得BC2=AB2+AC2-2AB·ACcos30°, ∴AC2-2AC+3=0.∴AC=. ∴S△ABC=AB·ACsin30°=×2××=. 答案: 【方法技巧】正、余弦定理求解面积问题 (1)当给出三角形两个角的三角函数值及其中一个角所对的边长,求三角形的面积时,主要利用正弦定理、余弦定理和三角形面积公式,在求解过程中往往利用三角公式进行恒等变形. (2)当以向量为背景考查正、余弦定理的应用时,关键是把三角形的面积用向量表示出来,用正余弦定理求出边长. 10.【解析】由1+2cos(B+C)=0和B+C=π-A,得 1-2cosA=0,cosA=,sinA=, 再由正弦定理,得sinB= 由b<a知B<A,所以B不是最大角,B<,从而cosB= 由上述结果知 sinC=sin(A+B)= ×(+). 设边BC上的高为h,则有h=bsinC= 【变式备选】在△ABC中,a、b、c分别是角A、B、C所对的边长,若(a+b+c)(sinA+sinB-sinC)=3asinB,求C的大小. 【解析】由题意可知,(a+b+c)(a+b-c)=3ab, 于是有a2+2ab+b2-c2=3ab, 即 所以cosC=,所以C=60°. 11.【解析】(1) ∴c=8, 由余弦定理得, ∴b=7, ∴△ABC的周长为a+b+c=3+8+7=18. (2)由正弦定理得 ∵a查看更多
相关文章
- 当前文档收益归属上传用户