- 2021-06-20 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020届高三数学(理)“大题精练”4
2020届高三数学(理)“大题精练”4 17.已知函数. (1)若的最小值是2,求a; (2)把函数图像向右平移个单位长度,得到函数图像,若时,求使成立的x的取值集合. 18.已知定义在R上的偶函数和奇函数满足. (1)证明:; (2)当时,不等式恒成立,求实数a的取值范围. 19.已知函数. (1)求的极值; (2)若在内有且仅有一个零点,求在区间上的最大值、最小值. 20.已知数列中,,,且. (1)判断数列足否为等比数列,并说明理由; (2)若,求数列的前n项和. 21.已知钝角中,角A,B,C的对边分别为a,b,c,其中A为钝角,若,且. (1)求角C; (2)若点D满足,且,求的周长. 22.已知函数 (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2020届高三数学(理)“大题精练”4(答案解析) 17.已知函数. (1)若的最小值是2,求a; (2)把函数图像向右平移个单位长度,得到函数图像,若时,求使成立的x的取值集合. 解:(1)∵ ∴,∴ (2)∵ 由知, ∴ 解得, ∴满足的x取值的集合为. 18.已知定义在R上的偶函数和奇函数满足. (1)证明:; (2)当时,不等式恒成立,求实数a的取值范围. 解:(1)依题意①, 又为偶函数,为奇函数 ∴,即② ∴由①②得, ∴得证; (2)原不等式可化为 ∴当时,成立,其中 ∴当时, 当且仅当时取最小值 ∴, ∴. 19.已知函数. (1)求的极值; (2)若在内有且仅有一个零点,求在区间上的最大值、最小值. 解:(1) 当时,, ∴在R上是单调增函数,故无极值. 当,此时,当或时, 时, ∴, 当时,,当或, , ∴, 综上,当时,无极值, 当时,,, 当时,, (2)若在内有且只有一个零点 由(1)知,且 即,∴∴ 又当时,, ,∴, 故在上的最大值为,最小值为. 20.已知数列中,,,且. (1)判断数列足否为等比数列,并说明理由; (2)若,求数列的前n项和. 解:(1)是等比数列 依题意知当n为偶数时, ∴,又 ∴数列为公比是3的等比数列 (2)当n为奇数时, 所以数列是以为首项,以为公差的等差数列 ∴ ∴ ∴ . 21.已知钝角中,角A,B,C的对边分别为a,b,c,其中A为钝角,若,且. (1)求角C; (2)若点D满足,且,求的周长. 解:(1)∵,∴,又, ∴,∴ 又A为钝角,∴为锐角, ∴即 又,∴ ∴,∴ ∵,∴B为锐角,故, ∴, ∴,,∴ (2)∵,∴,又,由余弦定理知 ,∴,∴ 法一:∴ ∴ ∴即 ∴ ∴的周长为 法二:∵,∴,又,由余弦定理得 ,∴① 在中, ∴② 联立①②得, 故的周长为. 22.已知函数 (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 解:(1) (ⅰ)时,当时,;当时,, 所以f(x)在单调递减,在单调递增; (ⅱ)时 若,则,所以f(x)在单调递增; 若,则,故当时,, ,;所以f(x)在单调递增,在单调递减; 若,则,故当,, ,;所以f(x)在单调递增,在单调递减; 综上:时,f(x)在单调递减,在单调递增; 时,f(x)在单调递增; 时,f(x)在单调递增,在单调递减; 时,f(x)在单调递增,在单调递减; (2)(ⅰ)当a>0,则由(1)知f(x)在单调递减,在单调递增, 又,,取b满足,且, 则,所以f(x)有两个零点 (ⅱ)当a=0,则,所以f(x)只有一个零点 (ⅲ)当a<0,若,则由(1)知,f(x)在单调递增.又当时,,故f(x)不存在两个零点 ,则由(1)知,f(x)在单调递减,在单调递增,又当,f(x)<0,故f(x)不存在两个零点 综上,a的取值范围为.查看更多