- 2021-06-19 发布 |
- 37.5 KB |
- 15页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019届二轮复习第八章第3节 空间点、直线、平面之间的位置关系学案(全国通用)
第3节 空间点、直线、平面之间的位置关系 最新考纲 1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题. 知 识 梳 理 1.平面的基本性质 (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在同一条直线上的三点,有且只有一个平面. (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 2.空间点、直线、平面之间的位置关系 直线与直线 直线与平面 平面与平面 平行关系 图形 语言 符号 语言 a∥b a∥α α∥β 相交关系 图形 语言 符号 语言 a∩b=A a∩α=A α∩β=l 独有关系 图形 语言 符号 语言 a,b是异面直线 a⊂α 3.平行公理(公理4)和等角定理 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 4.异面直线所成的角 (1)定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角). (2)范围:. [常用结论与微点提醒] 1.空间中两个角的两边分别对应平行,则两个角相等或互补. 2.异面直线的判定:经过平面内一点的直线与平面内不经过该点的直线互为异面直线. 3.唯一性的几个结论: (1)过直线外一点有且只有一个平面与已知直线垂直. (2)过平面外一点有且只有一个平面与已知平面平行. (3)过平面外一点有且只有一条直线与已知平面垂直. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( ) (2)两两相交的三条直线最多可以确定三个平面.( ) (3)如果两个平面有三个公共点,则这两个平面重合.( ) (4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面.( ) 解析 (1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误. (3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误. (4)由于a不平行于平面α,且a⊄α,则a与平面α相交,故平面α内有与a相交的直线,故错误. 答案 (1)× (2)√ (3)× (4)× 2.(必修2P52B1(2)改编)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( ) A.30° B.45° C.60° D.90° 解析 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求的角.又B1D1=B1C=D1C,∴∠D1B1C=60°. 答案 C 3.(2018·贵阳调研)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( ) A.垂直 B.相交 C.异面 D.平行 解析 依题意,m∩α=A,n⊂α,∴m与n异面、相交(垂直是相交的特例),一定不平行. 答案 D 4.(一题多解)(2017·全国Ⅰ卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( ) 解析 法一 对于选项B,如图(1)所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.因此A项不正确. 图(1) 图(2) 法二 对于选项A,其中O为BC的中点(如图(2)所示),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行. 答案 A 5.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为 . 解析 EF与正方体左、右两侧面均平行.所以与EF相交的侧面有4个. 答案 4 考点一 平面的基本性质及应用 【例1】 (1)(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件. 答案 A (2)如图所示,四边形ABEF和ABCD都是梯形,BC綉AD,BE綉FA,G,H分别为FA,FD的中点. ①证明:四边形BCHG是平行四边形; ②C,D,F,E四点是否共面?为什么? ①证明 由已知FG=GA,FH=HD,可得GH綉AD.又BC綉AD,∴GH綉BC, ∴四边形BCHG为平行四边形. ②解 ∵BE綉AF,G为FA的中点,∴BE綉FG, ∴四边形BEFG为平行四边形,∴EF∥BG. 由(1)知BG綉CH,∴EF∥CH,∴EF与CH共面. 又D∈FH,∴C,D,F,E四点共面. 规律方法 1.证明线共面或点共面的常用方法 (1)直接法,证明直线平行或相交,从而证明线共面. (2)纳入平面法,先确定一个平面,再证明有关点、线在此平面内. (3)辅助平面法,先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合. 2.证明点共线问题的常用方法 (1)基本性质法,一般转化为证明这些点是某两个平面的公共点,再根据基本性质3证明这些点都在这两个平面的交线上. (2)纳入直线法,选择其中两点确定一条直线,然后证明其余点也在该直线上. 【训练1】 如图,正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证: (1)E,C,D1,F四点共面; (2)CE,D1F,DA三线共点. 证明 (1)如图,连接EF,CD1,A1B. ∵E,F分别是AB,AA1的中点, ∴EF∥A1B. 又A1B∥D1C,∴EF∥CD1, ∴E,C,D1,F四点共面. (2)∵EF∥CD1,EF查看更多
相关文章
- 当前文档收益归属上传用户