- 2021-06-19 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
浙江专用2020版高考数学一轮复习(练习)专题9平面解析几何 第64练 直线的方程
第64练 直线的方程 [基础保分练] 1.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为( ) A.4x-3y-3=0 B.3x-4y-3=0 C.3x-4y-4=0 D.4x-3y-4=0 2.(2019·舟山一中期中)过点(1,1),且在y轴上的截距为3的直线方程是( ) A.x+2y-3=0 B.2x-y-1=0 C.x-2y-1=0 D.2x+y-3=0 3.(2019·东阳中学月考)倾斜角为135°,在y轴上的截距为-1的直线方程是( ) A.x-y+1=0 B.x-y-1=0 C.x+y-1=0 D.x+y+1=0 4.将直线y=3x绕原点逆时针旋转90°,再向右平移1个单位长度,则所得到的直线方程为( ) A.y=-x+ B.y=-x+1 C.y=3x-3 D.y=x+1 5.(2019·临安中学月考)已知直线l的斜率为,在y轴上的截距为另一条直线x-2y-4=0的斜率的倒数,则直线l的方程为( ) A.y=x+2 B.y=x-2 C.y=x+ D.y=-x+2 6.已知直线2x-my+1-3m=0,当m变动时,所有直线都通过定点( ) A. B. C. D. 7.经过点P(-5,-4),且与两坐标轴围成的三角形的面积为5的直线方程是( ) A.8x+5y+20=0或2x-5y-10=0 B.8x-5y-20=0或2x-5y+10=0 C.8x+5y+10=0或2x+5y-10=0 D.8x-5y+20=0或2x-5y-10=0 8.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程为( ) A.x+y-5=0 B.2x-y-1=0 C.2y-x-4=0 D.2x+y-7=0 9.在直线方程y=kx+b中,当x∈[-3,4]时,恰好y∈[-8,13],则此直线方程为_____________. 10.已知两条直线a1x+b1y+1=0和a2x+b2y+1=0都过点A(2,1),则过两点P1(a1,b1),P2(a2,b2)的直线方程是________. [能力提升练] 1.若直线4x-3y-12=0被两坐标轴截得的线段长为,则实数c的值为( ) A.B.C.6D.5 2.(2019·湖州一中月考)过点A(-1,-3),斜率是直线y=3x的斜率的-的直线方程为( ) A.3x+4y+15=0 B.4x+3y+6=0 C.3x+y+6=0 D.3x-4y+10=0 3.(2019·杭州二中月考)过点P(1,3)且与x,y轴的正半轴围成的三角形面积等于6的直线方程是( ) A.3x+y-6=0 B.x+3y-10=0 C.3x-y=0 D.x-3y+8=0 4.(2019·效实中学期中)过点M(2,1)的直线l与x轴,y轴分别交于P,Q两点,O为原点,且S△POQ=4,则符合条件的直线l有( ) A.1条B.2条C.3条D.4条 5.过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,则此直线方程为________________. 6.设直线l的方程为(a+1)x+y-2-a=0(a∈R). (1)若直线l在两坐标轴上的截距相等,则直线l的方程为__________________________; (2)若a>-1,直线l与x,y轴分别交于M,N两点,O为坐标原点,则△OMN的面积取最小值时,直线l对应的方程为________________. 答案精析 基础保分练 1.D 2.D 3.D 4.A 5.A 6.D 7.D 8.A 9.3x-y+1=0或3x+y-4=0 10.2x+y+1=0 能力提升练 1.B [令x=0,得y=-4;令y=0,得x=3. ∵2=32+(-4)2,且c>0, ∴c=,故选B.] 2.A [由题意知,所求直线的斜率k=-,由点斜式得直线方程y+3=-(x+1),即3x+4y+15=0,故选A.] 3.A [设所求直线方程为+=1(a>0,b>0),则有ab=6且+=1, ∴a=2,b=6,则所求直线方程为+=1,即3x+y-6=0,故选A.] 4.C [设直线l方程为y-1=k(x-2), ∴P,Q(0,-2k+1), ∴S△POQ=|1-2k|=4, ∴k=或k=-,故选C.] 5.x+4y-4=0 解析 过点M且与x轴垂直的直线是x=0,它和直线l1,l2的交点分别是,(0,8),显然不符合题意.故可设所求直线方程为y=kx+1,其图象与直线l1,l2分别交于A,B两点, 则有① ② 由①解得xA=, 由②解得xB=. 因为点M平分线段AB, 所以xA+xB=2xM, 即+=0,解得k=-, 故所求的直线方程为y=-x+1, 即x+4y-4=0. 6.(1)x-y=0或x+y-2=0 (2)x+y-2=0 解析 (1)当直线l经过坐标原点时, 由该直线在两坐标轴上的截距相等可得a+2=0,解得a=-2. 此时直线l的方程为-x+y=0,即x-y=0; 当直线l不经过坐标原点,即a≠-2且a≠-1时,由直线在两坐标轴上的截距相等可得=2+a,解得a=0, 此时直线l的方程为x+y-2=0. 所以直线l的方程为x-y=0或x+y-2=0. (2)由直线方程可得M,N(0,2+a), 因为a>-1, 所以S△OMN=××(2+a) =× = ≥=2. 当且仅当a+1=, 即a=0时等号成立.此时直线l的方程为x+y-2=0.查看更多