- 2021-06-17 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数学理卷·2018届黑龙江省大庆铁人中学高三10月月考(2017
高三.十月阶段测试(数学理) 考试时间:120分钟 总分:150分 一. 选择题(每个题5分,共60分) 第1题图 1.设全集,,B,则右图中阴影部分表示的集合为 ( ) A. B. C. D. 2.函数f(x)=2x+4x-3的零点所在区间是( ) A. B. C. D. 3.命题“对任意实数x∈[1,2],关于x的不等式x2-a≤0恒成立”为真命题的一个必要不充分条件 是( ) A.a≥4 B.a≤4 C.a≥3 D.a≤3 4.设f(x)= 则f[f(-2)]=( ) A. -1 B. C. D. 5.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=( ) A.-3 B.-1 C.1 D.3 6.已知函数f(x)满足对任意的x1,x2∈(0,+∞),恒有(x1-x2)·[f(x1)-f(x2)]<0成立.若a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是( ) A.c0知,f′(x)与1-x+ex-1同号. 令g(x)=1-x+ex-1,则g′(x)=-1+ex-1. 所以,当x∈(-∞,1)时,g′(x)<0,g(x)在区间(-∞,1)上单调递减; 当x∈(1,+∞)时,g′(x)>0,g(x)在区间(1,+∞)上单调递增. 故g(1)=1是g(x)在区间(-∞,+∞)上的最小值, 从而g(x)>0,x∈(-∞,+∞). 综上可知,f′(x)>0,x∈(-∞,+∞), 故f(x)的单调递增区间为(-∞,+∞). 20.已知函数f(x)=ex-ln(x+m).设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; 解:f′(x)=ex-. 由x=0是f(x)的极值点得f′(0)=0,所以m=1. 于是f(x)=ex-ln(x+1),定义域为(-1,+∞),f′(x)=ex-. 函数f′(x)=ex-在(-1,+∞)上单调递增, 且f′(0)=0,因此当x∈(-1,0)时, f′(x)<0;当x∈(0,+∞)时,f′(x)>0. 所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增. 21.已知函数f(x)=(x-2)ex+a(x-1)2有两个零点. (1)求a的取值范围; (2)设x1,x2是f(x)的两个零点,证明:x1+x2<2. 解:(1)f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a). (i)设a=0,则f(x)=(x-2)ex,f(x)只有一个零点. (ii)设a>0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增. 又f(1)=-e,f(2)=a,取b满足b<0且b查看更多