- 2021-06-17 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020年浙江新高考数学二轮复习教师用书:专题五 4 高考解答题的审题与答题示范(五)
高考解答题的审题与答题示范(五) 解析几何类解答题 [思维流程]——圆锥曲线问题重在“设”与“算” [审题方法]——审方法 数学思想是问题的主线,方法是解题的手段.审视方法,选择适当的解题方法,往往使问题的解决事半功倍.审题的过程还是一个解题方法的抉择过程,开拓的解题思路能使我们心涌如潮,适宜的解题方法则帮助我们事半功倍. 典例 (本题满分15分)设O为坐标原点,动点M在椭圆C:+y2=1上,过点M作x轴的垂线,垂足为N,点P满足= . (1)求点P的轨迹方程; (2)设点Q在直线x=-3上,且·=1.证明:过点P且垂直于OQ的直线l过C的左焦点F. 审题路线 (1)要求P点的轨迹方程⇒求点P(x,y)的横坐标x与纵坐标y的关系式⇒利用条件= 求解. (2)要证过点P且垂直于OQ的直线l过C的左焦点F⇒证明⊥⇒·=0. 标准答案 阅卷现场 (1)设P(x,y),M(x0,y0),N(x0,0),则=(x-x0,y), =(0,y0),① 第(1)问 第(2)问 得 分 点 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 2 2 2 1 2 1 1 1 2 1 7分 8分 由= , 得x0=x,y0=y,② 因为M(x0,y0)在C上, 所以+=1,③ 因此点P的轨迹方程为x2+y2=2.④ (2)证明:由题意知F(-1,0), 设Q(-3,t),P(m,n) , 设而不求 则=(-3,t),=(-1-m,-n),⑤ ·=3+3m-tn,⑥ =(m,n),=(-3-m,t-n),⑦ 由·=1得-3m-m2+tn-n2=1,⑧ 又由(1)知m2+n2=2,故3+3m-tn=0. 所以·=0,即⊥,⑨ 又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.⑩ 第(1)问踩点得分说明 ①设出点P、M、N的坐标,并求出和的坐标得2分; ②由= ,正确求出x0=x,y0=y得2分; ③代入法求出+=1得2分; ④化简成x2+y2=2得1分. 第(2)问踩点得分说明 ⑤求出和的坐标得2分; ⑥正确求出·的值得1分; ⑦正确求出和的坐标得1分; ⑧由·=1得出-3m-m2+tn-n2=1得1分; ⑨得出⊥得2分; ⑩写出结论得1分.查看更多