- 2021-06-17 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
专题3-4+导数的实际应用(讲)-2018年高考数学一轮复习讲练测(江苏版)
【考纲解读】 内 容 要 求 备注 A B C 导数及其应用 导数在实际问题中的应用 √ 对知识的考查要求依次分为了解、理解、掌握三个层次(在表中分别用A、B、C表示). 了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题. 理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题. 掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题. 【知识清单】 考点1 利用导数研究生活中的优化问题 利用导数解决生活中的优化问题的一般步骤 (1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x); (2)求函数的导数f′(x),解方程f′(x)=0; (3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 【考点深度剖析】 以实际生活为背景,通过求面(容)积最大、用料最省、利润最大、效率最高等问题考查学生分析问题、解决问题以及建模的能力,常与函数关系式的求法、函数的性质(单调性、最值)、不等式、导数、解析几何中曲线方程、空间几何体等知识交汇考查. 【重点难点突破】 考点1 利用导数研究生活中的优化问题 【1-1】如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数的图象,且点M到边OA距离为. (1)当时,求直路所在的直线方程; (2)当为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少? 【答案】(1);(2)时,. 面积,当,. 【1-2】放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M(60)=_______太贝克 【答案】150 【解析】,∴当t=30时,即 ∴∴当t=60时 【1-3】某种产品每件成本为6元,每件售价为x元(6查看更多
相关文章
- 当前文档收益归属上传用户