- 2021-06-17 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2017-2018学年广东省普宁市华美实验学校高二上学期第二次月考数学(理)试题
2017-2018学年广东省普宁市华美实验学校高二上学期第二次月考数学理试题 考试时间:120分钟;满分:150分; 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一、 选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案填涂在答题卷上) 1.动点P到点M(1,0)与点N(3,0)的距离之差为2,则点P的轨迹是( ) A.双曲线 B.双曲线的一支 C.两条射线 D.一条射线 2.“x2﹣x=0”是“x=1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.下列曲线中焦点坐标为的是( ) A. B. C. D. 4.在中,已知,,则的值为( ) A. B. C. D. 5.等差数列{an}中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}前9项的和S9等于( ) A.99 B.66 C.144 D.297 6. 过抛物线y2=4x的焦点且与x轴垂直的直线交双曲线的两条渐近线于A、B两点, 则|AB|=( ) A. B. C.6 D. 7.在R上定义运算若不等式对任意实数成立,则() A. B. C. D. 8. 设两点A、B的坐标为A(﹣1,0)、B(1,0),若动点M满足直线AM与BM的斜率之积为﹣2, 则动点M的轨迹方程为( ) A.x2﹣=1 B.x2﹣=1(x≠±1)C.x2+=1 D.x2+=1(x≠±1) 9.已知正项数列中,,记数列的 前项和为,则的值是( ) A. B. C. D.3 10.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6个单位,递减的比例为40%,今共有粮m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m的值分别为( ) A.20% 369 B.80% 369 C.40% 360 D.60% 365 11.设点P(x,y)在不等式组表示的平面区域上,则z=的最小值为( )A.1 B. C.2 D. 12.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为( )A.0 B.1 C. D.3 二、填空题(本大题共4小题,每小题5分,共20分) 13.数列{an}是等比数列,满足a2=2,a2+a4+a6=14,则a6= . 14.已知命题,命题,若命题是真命题, 则实数a的取值范围是__________. 15. 在中,角所对的边分别为,若,b=,,则 . 16.F1、F2为双曲线C:的左、右焦点,点M在双曲线上且∠F1MF2=60°,则= . 三、解答题(本大题共6小题,共70分,解答应写出文字说明或演算步骤.) 17.(10分)求适合下列条件的椭圆的标准方程. (1)长轴在x轴上,长轴的长等于12,离心率等于; (2)长轴长是短轴长的2倍,且椭圆过点(﹣2,﹣4). 18.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=,B=A+. (1)求b的值; (2)求△ABC的面积. 19.(12分)已知等差数列{an}满足a2=0,a6+a8= -10 (I)求数列{an}的通项公式; (II)求数列的前n项和。 20.(12分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示: 连续剧播放时长(分钟) 广告播放时长(分钟) 收视人次(万) 甲 70 5 60 乙 60 5 25 已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用x,y 表示每周计划播出的甲、乙两套连续剧的次数. (I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域; (II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多? 21.(12分)已知椭圆C:+=1(a>b>0)的离心率为,且曲线过点(1,) (1)求椭圆C的方程; (2)已知直线x﹣y+m=0与椭圆C交于不同的两点A,B,且线段AB的中点不在圆x2+y2=内, 求m的取值范围. 22.(12分)已知椭圆C1: +x2=1(a>1)与抛物线C2:x2=4y有相同焦点F1. (Ⅰ)求椭圆C1的标准方程; (Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的 直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程. 高二级理科数学试题卷 试卷答案 1. D 2.B 3. A 4.D 5.A 6.B 7.C 8.D 9.D 10.A 11.D 12.B 13. 8 14. 15. 16.4 10.A【解答】解:设“衰分比”为a,甲衰分得b石, 由题意得,解得b=125,a=20%,m=369. 11.D【解答】解:作出不等式组对应的平面区域,z== 则z的几何意义是区域内的点到点D(1,0)的距离,由图象知D到直线2x﹣y=0的距离最小,此时d==, 故选:D 12.B【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z均为正实数, ∴==≤=1(当且仅当x=2y时取“=”), ∴=1,此时,x=2y.∴z=x2﹣3xy+4y2=(2y)2﹣3×2y×y+4y2=2y2, ∴+﹣=+﹣=﹣+1≤1,当且仅当y=1时取得“=”,满足题意. ∴的最大值为1. 17.【解答】解:(1)由已知2a=12,e=,得a=6,c=4,从而b2=a2﹣c2=20, 又长轴在x轴上,故所求椭圆的标准方程为;……………………4分 (2) ∵2a=2×2b,∴a=2b,……………………5分 当焦点在x轴上时,设方程为, ∵点(﹣2,﹣4)在椭圆上,∴,得b2=17, ∴椭圆的标准方程为;……………………7分 当焦点在y轴上时,设方程为, ∵点(﹣2,﹣4)在椭圆上,∴,得b2=8, ∴椭圆的标准方程为,……………………9分 ∴椭圆的标准方程为或.……………………10分 19【解答】解: 18.【解答】 . 20.(Ⅰ)解:由已知,满足的数学关系式为即 该二元一次不等式组所表示的平面区域为图1中的阴影部分: (Ⅱ)解:设总收视人次为z万,则目标函数为. 考虑,将它变形为,这是斜率为,随z变化的一族平行直线.为直线在轴上的截距,当取得最大值时,z的值最大.又因为满足约束条件,所以由图2可知,当直线经过可行域上的点M时,截距最大,即最大. 解方程组得点M的坐标为. 所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多. 21.【解答】解:(1)∵,∴,∴a2=2b2① 曲线过,则② 由①②解得,则椭圆方程为. (2)联立方程,消去y整理得:3x2+4mx+2m2﹣2=0 则△=16m2﹣12(2m2﹣2)=8(﹣m2+3)>0,解得③ ,, 即AB的中点为又∵AB的中点不在内, ∴解得,m≤﹣1或m≥1④ 由③④得:<m≤﹣1或1≤m<. 22.【解答】解:(Ⅰ)∵抛物线x2=4y的焦点为F1(0,1), ∴c=1,又b2=1,∴∴椭圆方程为: +x2=1. (Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在, 设直线l1:y=kx﹣1,由消去y并化简得x2﹣4kx+4=0 ∵直线l1与抛物线C2相切于点A.∴△=(﹣4k)2﹣4×4=0,得k=±1. ∵切点A在第一象限.∴k=1 ∵l∥l1 ∴设直线l的方程为y=x+m 由,消去y整理得3x2+2mx+m2﹣2=0, △=(2m)2﹣12(m2﹣2)>0,解得. 设B(x1,y1),C(x2,y2),则, . 又直线l交y轴于D(0,m) ∴ = 当,即时,. 所以,所求直线l的方程为.查看更多