- 2021-06-16 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习人教B版绝对值不等式学案
§2.5 绝对值不等式 最新考纲 考情考向分析 1.会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c型不等式. 2.了解不等式||a|-|b||≤|a+b|≤|a|+|b|. 绝对值不等式的解法,利用绝对值不等式求最值是考查的重点;高考中绝对值不等式和数列、函数的结合是常见题型,解答题居多,难度为中高档. 1.绝对值三角不等式 (1)定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立. (2)定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立. 2.绝对值不等式的解法 (1)含绝对值的不等式|x|a的解集: 不等式 a>0 a=0 a<0 |x|a (-∞,-a)∪(a,+∞) (-∞,0)∪(0,+∞) R (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法: ①|ax+b|≤c⇔-c≤ax+b≤c; ②|ax+b|≥c⇔ax+b≥c或ax+b≤-c. 概念方法微思考 |x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式有哪些解法?各体现了什么数学思想? 提示 (1)利用绝对值不等式的几何意义求解,体现了数形结合的思想; (2)利用“零点分段法”求解,体现了分类讨论的思想; (3)通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)|x+2|的几何意义是数轴上坐标为x的点到点2的距离.( × ) (2)|x|>a的解集是{x|x>a或x<-a}.( × ) (3)|a+b|=|a|+|b|成立的条件是ab≥0.( √ ) (4)若ab<0,则|a+b|<|a-b|.( √ ) (5)对一切x∈R,不等式|x-a|+|x-b|>|a-b|恒成立.( × ) 题组二 教材改编 2.[P20T7]不等式3<|5-2x|≤9的解集为( ) A.[-2,1)∪[4,7) B.(-2,1]∪(4,7] C.(-2,-1]∪[4,7) D.[-2,1)∪(4,7] 答案 D 解析 由题意得 即 解得不等式的解集为[-2,1)∪(4,7]. 3.[P20T8]不等式|x-1|-|x-5|<2的解集是( ) A.(-∞,4) B.(-∞,1) C.(1,4) D.(1,5) 答案 A 解析 ①当x≤1时,原不等式可化为1-x-(5-x)<2, ∴-4<2,不等式恒成立, ∴x≤1. ②当1查看更多