- 2021-06-16 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
北师大版高中数学选修1-1同步练习【第4章】函数的极值(含答案)
函数的极值 同步练习 一,选择题: 1.函数 93)( 23 xaxxxf ,已知 )(xf 在 3x 时取得极值,则a =( ) A. 2 B. 3 C. 4 D. 5 2.下列说法正确的是( ) A.函数的极大值就是函数的最大值 B. 函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值 3.下列说法正确的是( ) A.当 f (x0)=0 时,则 f(x0)为 f(x)的极大值 B.当 f (x0)=0 时,则 f(x0)为 f(x) 的极小值 C.当 f (x0)=0 时,则 f(x0)为 f(x)的极值 D.当 f(x0)为函数 f(x)的极值时, 则有 f (x0)=0 4. 如图是函数 f(x)=x3+bx2+cx+d 的大致图象,则 xx 2 2 2 1 等于 ( ) A、 3 2 B、 3 4 C、 3 8 D、 3 12 二,填空题: 5 、 曲 线 xy ln 在 点 M(e,1) 处 的 切 线 的 斜 率 是 _______ , 切 线 的 方 程 为 ____________ 。 6、函数 2,0,sin xxxy 的值域是 。 7、给出下列命题: (1)若函数 f(x)=|x|,则 f’(0)=0; (2)若函数 f(x)=2x2+1,图象上 P(1,3)及邻近上点 Q(1+Δx,3+Δy), 则 x y =4+2 Δx (3)加速度是动点位移函数 S(t)对时间 t 的导数; (4)y=2cosx+lgx,则 y’=-2cosx·sinx+ 1 10xln 其中所有正确的命题序号为_________ 三:解答题( 30 分) 1 2X1 X2 xO 8 . 设 a 为实数,函数 .)( 23 axxxxf 求 )(xf 的极值 9、已知二次函数 f(x)满足: ①在 x=1 时有极值; ②图象过点(0,-3),且在该点处的切线与直线 2x+y=0 平行. (1)求 f(x)的解析式;(2)求函数 g(x)=f(x2)的单调递增区间. 10. 若函数 4)( 3 bxaxxf ,当 2x 时,函数 )(xf 有极值 3 4 , (1)求函数的解析式; (2)若函数 kxf )( 有 3 个解,求实数 k 的取值范围. 答案: 1.B 2.D 3.D 4.C 5. e 1 , xey 1 。 6、 12,0 7.(2) 8.解: (1)解:(I) '( )f x =3 2x -2 x -1 若 '( )f x =0,则 x ==- 1 3 , x =1 当 x 变化时, '( )f x , ( )f x 变化情况如下表: x (-∞,- 1 3 ) - 1 3 (- 1 3 ,1) 1 (1,+ ∞) '( )f x + 0 - 0 + ( )f x 极大值 极小值 ∴ ( )f x 的极大值是 1 5( )3 27f a ,极小值是 (1) 1f a 9、(1)设 f(x)=ax2+bx+c,则 f (x)=2ax+b. 由题设可得: ,3)0( ,2)0( ,0)1( f f f 即 .3 ,2 ,02 c b ba 解得 .3 ,2 ,1 c b a 所以 f(x)=x2-2x-3. (2)g(x)=f(x2)=x4-2x2-3,g (x)=4x3-4x=4x(x-1)(x+1). 列表: 由表可得:函数 g(x)的单调递增区间为(-1,0),(1,+∞). 10. 解: baxxf 23 (1)由题意: 3 44282 0122 baf baf x (-∞,-1) -1 (-1,0) 0 (0,1) 1 (1,+∞) f(x) - 0 + 0 - 0 + f(x) ↘ ↗ ↘ ↗ 解得 4 3 1 b a 所求解析式为 443 1 3 xxxf (2)由(1)可得: 2242 xxxxf 令 0 xf ,得 2x 或 2x 当 x 变化时, xf 、 xf 的变化情况如下表: x 2, 2 2,2 2 ,2 xf 0 — 0 xf 单调递增↗ 3 28 单调递减↘ 3 4 单调递增↗ 因此,当 2x 时, xf 有极大值 3 28 当 2x 时, xf 有极小值 3 4 函数 443 1 3 xxxf 的图象大致如图: y=k 由图可知: 3 28 3 4 k 3 4 3 28 2 2 y x 0查看更多