- 2021-06-16 发布 |
- 37.5 KB |
- 32页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届高考数学一轮复习第四章三角函数解三角形第1节任意角和蝗制及任意角的三角函数课件新人教A版
第 1 节 任意角和弧度制及任意角的三角函数 考试要求 1. 了解任意角的概念和弧度制的概念; 2. 能进行弧度与角度的互化; 3. 理解任意角的三角函数 ( 正弦、余弦、正切 ) 的定义 . 知 识 梳 理 1. 角的概念的推广 端点 正角 负角 零角 象限角 2. 弧度制的定义和公式 (1) 定义:把长度等于 __________ 的弧所对的圆心角叫做 1 弧度的角,弧度记作 rad. (2) 公式 半径长 | α | r 3. 任意角的三角函数 y x 正弦线 余弦线 正切线 [ 常用结论与微点提醒 ] 1. 三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦 . 3. 角度制与弧度制可利用 180° = π rad 进行互化,在同一个式子中,采用的度量制必须一致,不可混用 . 4. 区分两个概念 (1) 第一象限角未必是锐角,但锐角一定是第一象限角 . (2) 不相等的角未必终边不相同,终边相同的角也未必相等 . 诊 断 自 测 1. 判断下列结论正误 ( 在括号内打 “√” 或 “×” ) (1) 小于 90° 的角是锐角 .( ) (2) 锐角是第一象限角,第一象限角也都是锐角 .( ) (3) 角 α 的三角函数值与其终边上点 P 的位置无关 .( ) (4) 若 α 为第一象限角,则 sin α + cos α >1.( ) (2) 第一象限角不一定是锐角 . 答案 (1) × (2) × (3) √ (4) √ A. - 5 B.5 C.±5 D.±8 答案 C 3. ( 老教材必修 4P4 例 1 改编 ) 在- 720° ~ 0° 范围内,所有与角 α = 45° 终边相同的角 β 构成的集合为 ________. 解析 所有与角 α 终边相同的角可表示为: β = 45° + k × 360°( k ∈ Z ) ,则令 - 720° ≤ 45° + k × 360°<0°( k ∈ Z ) ,得- 765° ≤ k × 360°< - 45°( k ∈ Z ). 解得 k =- 2 或 k =- 1 , ∴ β =- 675° 或 β =- 315°. 答案 { - 675° ,- 315°} 4. (2020· 唐山模拟 ) 已知角 α 的顶点在原点,始边与 x 轴的正半轴重合,终边上一点 A (2sin α , 3)(sin α ≠ 0) ,则 cos α = ( ) 答案 A 5. (2020· 九江一模 ) 若 sin α <0 ,且 sin(cos α )>0 ,则角 α 是 ( ) A. 第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角 解析 ∵ - 1 ≤ cos α ≤ 1 ,且 sin(cos α )>0 , ∴ 0查看更多