- 2021-06-16 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习(理,鲁津京琼)人教B版1-4从函数的观点看一元二次方程和一元二次不等式学案
第4节 从函数的观点看一元二次方程和一元二次不等式 考试要求 1.会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系;2.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集;3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系. 知 识 梳 理 1.一元二次不等式 只含有一个未知数,并且未知数的最高次数为2的整式不等式叫作一元二次不等式. 2.三个“二次”间的关系 判别式Δ=b2-4ac Δ>0 Δ=0 Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a>0)的根 有两相异实根x1,x2(x1<x2) 有两相等实根x1=x2=- 没有实数根 ax2+bx+c>0 (a>0)的解集 R ax2+bx+c<0 (a>0)的解集 {x|x1<x<x2} ∅ ∅ 3.(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解集 不等式 解集 ab (x-a)·(x-b)>0 {x|xb} {x|x≠a} {x|xa} (x-a)·(x-b)<0 {x|a查看更多