- 2021-06-16 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
几类不同增长的函数模型
3.2 函数模型及其应用 3.2.1 几类不同增长的函数模型 一、教学目标 (1) 使学生通过投资回报实例,对直线上升和指数爆炸有感性认识。 (2) 通过阅读理解题目中文字叙述所反映的实际背景,领悟其中的数学本质,弄清题中出现的量及起数学含义。 (3) 体验由具体到抽象及数形结合的思维方法。 二、教学重点与难点 重点:将实际问题转化为函数模型,比教常数函数、一次函数、指数函数模型的增长差异;结合实例让学生体会直线上升,指数爆炸等不同函数型增长的函义。 难点:怎样选择数学模型分析解决实际问题。 三、教学手段: 运用计算机、实物投影仪等多媒体技术。 四、教材分析: 1、 背景 (1) 圆的周长随着圆的半径的增大而增大: L=2πR (一次函数) (2)圆的面积随着圆的半径的增大而增大: S=πR2 (二次函数) (3)某种细胞分裂时,由1个分裂成两 个,两个分裂成4个……,一个这样的细 胞分裂x次后,得到的细胞个数y与x的函数关系是 y = 2x (指数 型函数) 。 2、例题 例1、假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多 回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。 请问,你会选择哪种投资方案呢? 投资方案选择原则: 4 投入资金相同,回报量多者为优 (1) 比较三种方案每天回报量 (2) 比较三种方案一段时间内的总回报量 哪个方案在某段时间内的总回报量最多,我们就在那段时间选择该方案。 x/天 方案一 方案二 方案三 y/元 增长量/元 y/元 增长量/元 y/元 增长量/元 1 40 0 10 0.4 2 40 0 20 10 0.8 0.4 3 40 0 30 10 1.6 0.8 4 40 0 40 10 3.2 1.6 5 40 0 50 10 6.4 3.2 6 40 0 60 10 12.8 6.4 7 40 0 70 10 25.6 12.8 8 40 0 80 10 51.2 25.6 9 40 0 90 10 102.4 51.2 … … … … … … … 30 40 0 300 10 214748364.8 107374182.4 根据上表我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据。 解:设第x天所得回报为y元,则 方案一:每天回报40元; y=40 (x∈N*) 方案二:第一天回报10元,以后每天比前一天多回 报10元; y=10x (x∈N*) 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。 Y=0.4×2x-1(x) 4 图112-1 从每天的回报量来看: 第1~4天,方案一最多: 每5~8天,方案二最多: 第9天以后,方案三最多; 有人认为投资 1~4天选择方案一; 5~8天选择方案二; 9天以后选择方案三。 累积回报表 天数 方案 1 2 3 4 5 6 7 8 9 10 11 一 40 80 120 160 200 240 280 320 360 400 440 二 10 30 60 100 150 210 280 360 450 550 660 三 0.4 1.2 2.8 6 12.4 25.2 50.8 102 204.4 409.2 816.8 结论 投资8天以下(不含8天),应选择第一种投资方案;投资8~10天,应选择第二种投资方案;投资11天(含11天)以上,应选择第三种投资方案。 4 3.例题的启示: 解决实际问题的步骤: (1)实际问题 (2)读懂问题抽象概括 (3)数学问题 (4)演算推理 (5)数学问题的解 (6)还原说明 (7)实际问题的解 4.练习 某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且资金y(单位:万元)随着销售利润x (单位:万元)的增加而增加,但资金数不超过5万元,同时奖金不超过利润的25%。现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求呢? 5.小结 (1)解决实际问题的步骤: 实际问题 读懂问题 将问题抽象化 数学模型 解决问题 (2)几种常见函数的增长情况: 常数函数 一次函数 指数函数 没有增长 直线上升 指数爆炸 6.作业: 课本116页练习题集1、2题 4查看更多