2018届二轮复习不等式、推理与证明:直接证明与间接证明学案(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018届二轮复习不等式、推理与证明:直接证明与间接证明学案(全国通用)

直接证明与间接证明 ‎【考点梳理】‎ ‎1.直接证明 内容 综合法 分析法 定义 利用已知条件和某些数 定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立 从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件 思维过程 由因导果 执果索因 框图表示 →→…→‎ →→…→ 书写格式 因为…,所以…或由…,得…‎ 要证…,只需证…,即证…‎ ‎2.间接证明 反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.‎ ‎【考点突破】‎ 考点一、综合法 ‎【例1】已知正方体ABCDA1B‎1C1D1中,E,F分别为D‎1C1,C1B1的中点,AC∩BD=P,A‎1C1∩EF=Q.求证:‎ ‎(1)D,B,F,E四点共面;‎ ‎(2)若A‎1C交平面DBFE于R点,则P,Q,R三点共线.‎ ‎[解析]证明:(1)如图所示,因为EF是△D1B‎1C1的中位线,‎ 所以EF∥B1D1.‎ 在正方体ABCDA1B1C1D1中,B1D1∥BD,所以EF∥BD,‎ 所以EF,BD确定一个平面,‎ 即D,B,F,E四点共面.‎ ‎(2)在正方体ABCDA1B1C1D1中,设平面A1ACC1确定的平面为α,‎ 又设平面BDEF为β.‎ 因为Q∈A1C1,所以Q∈α.‎ 又Q∈EF,所以Q∈β,‎ 则Q是α与β的公共点.‎ 同理,P点也是α与β的公共点.‎ 所以α∩β=PQ.‎ 又A1C∩β=R,‎ 所以R∈A1C,则R∈α且R∈β,‎ 则R∈PQ,故P,Q,R三点共线.‎ ‎【类题通法】‎ 综合法是“由因导果”的证明方法,其逻辑依据是三段论式的演绎推理方法,常与分析法结合使用,用分析法探路,综合法书写,但要注意有关定理、性质、结论题设条件的正确运用.‎ ‎【对点训练】‎ 已知函数f(x)=ln(1+x),g(x)=a+bx-x2+x3,函数y=f(x)与函数y=g(x)的图象在交点(0,0)处有公共切线.‎ ‎(1)求a,b的值;‎ ‎(2)证明:f(x)≤g(x).‎ ‎[解析] (1)f′(x)=,g′(x)=b-x+x2,‎ 由题意得 解得a=0,b=1.‎ ‎(2)证明:令h(x)=f(x)-g(x)‎ ‎=ln(x+1)-x3+x2-x(x>-1).‎ h′(x)=-x2+x-1=.‎ 所以h(x)在(-1,0)上为增函数,在(0,+∞)上为减函数.‎ h(x)max=h(0)=0,h(x)≤h(0)=0,即f(x)≤g(x).‎ 考点二、分析法 ‎【例2】已知a>0,求证:-≥a+-2.‎ ‎[解析]证明:要证-≥a+-2,‎ 只需要证+2≥a++.‎ 因为a>0,故只需要证2≥2,‎ 即a2++4+4≥a2+2++2+2,‎ 从而只需要证2≥,‎ 只需要证4≥2,‎ 即a2+≥2,而上述不等式显然成立,故原不等式成立.‎ ‎【类题通法】‎ ‎1.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.‎ ‎2.分析法的特点和思路是“执果索因”,逐步寻找结论成立的充分条件,即从“未知”看“需知”,逐步靠拢“已知”或本身已经成立的定理、性质或已经证明成立的结论等,通常采用“欲证—只需证—已知”的格式,在表达中要注意叙述形式的规范性.‎ ‎【对点训练】‎ 已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:+=.‎ ‎[解析]证明:要证+=,‎ 即证+=3,也就是+=1,‎ 只需证c(b+c)+a(a+b)=(a+b)(b+c),‎ 需证c2+a2=ac+b2,‎ 又△ABC三内角A,B,C成等差数列,故B=60°,‎ 由余弦定理,得 b2=c2+a2-2accos 60°,‎ 即b2=c2+a2-ac,故c2+a2=ac+b2成立.‎ 于是原等式成立.‎ 考点三、反证法 ‎【例3】设{an}是公比为q的等比数列.‎ ‎(1)推导{an}的前n项和公式;‎ ‎(2)设q≠1,证明数列{an+1}不是等比数列.‎ ‎[解析] (1)设{an}的前n项和为Sn,‎ 当q=1时,Sn=a1+a1+…+a1=na1;‎ 当q≠1时,Sn=a1+a1q+a1q2+…+a1qn-1,①‎ qSn=a1q+a1q2+…+a1qn,②‎ ‎①-②得,(1-q)Sn=a1-a1qn,‎ ‎∴Sn=,∴Sn= ‎(2)证明:假设{an+1}是等比数列,则对任意的k∈N*,‎ ‎(ak+1+1)2=(ak+1)(ak+2+1),‎ a+2ak+1+1=akak+2+ak+ak+2+1,‎ aq2k+2a1qk=a1qk-1·a1qk+1+a1qk-1+a1qk+1.‎ ‎∵a1≠0,∴2qk=qk-1+qk+1.∵q≠0,∴q2-2q+1=0,‎ ‎∴q=1,这与已知矛盾.‎ ‎∴假设不成立,故{an+1}不是等比数列.‎ ‎【类题通法】‎ 用反证法证明问题的步骤:‎ ‎(1)反设:假定所要证的结论不成立,而设结论的反面成立;(否定结论)‎ ‎(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)‎ ‎(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)‎ ‎【对点训练】‎ 已知a≥-1,求证三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根.‎ ‎[解析]证明:假设三个方程都没有实数根,则 ⇒ ‎∴-
查看更多

相关文章