- 2021-06-16 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
《_单调性与最大(小)值()》学案
学习目标 1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; 2. 能够熟练应用定义判断数在某区间上的单调性; 3. 学会运用函数图象理解和研究函数的性质. 学习过程 一、课前准备 (预习教材P27~ P29,找出疑惑之处) 引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢? 复习1:观察下列各个函数的图象. 探讨下列变化规律: ① 随x的增大,y的值有什么变化? ② 能否看出函数的最大、最小值? ③ 函数图象是否具有某种对称性? 复习2:画出函数、的图象. 小结:描点法的步骤为:列表→描点→连线. 二、新课导学 ※ 学习探究 探究任务:单调性相关概念 思考:根据、的图象进行讨论:随x的增大,函数值怎样变化?当x>x时,f(x)与f(x)的大小关系怎样? 问题:一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质? 新知:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1查看更多
相关文章
- 当前文档收益归属上传用户