【数学】2020届一轮复习人教A版第三章第2课时利用导数研究函数的极值最值学案
第2课时 利用导数研究函数的极值、最值
考点一 利用导数解决函数的极值问题 多维探究
角度1 根据函数图象判断函数极值
【例1-1】 已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(-2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(-2)
D.函数f(x)有极大值f(-2)和极小值f(2)
解析 由题图可知,当x<-2时,f′(x)>0;当-2
2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.
答案 D
规律方法 由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.
角度2 已知函数求极值
【例1-2】 (2019·哈尔滨模拟)已知函数f(x)=ln x-ax(a∈R).
(1)当a=时,求f(x)的极值;
(2)讨论函数f(x)在定义域内极值点的个数.
解 (1)当a=时,f(x)=ln x-x,函数的定义域为(0,+∞)且f′(x)=-=,
令f′(x)=0,得x=2,
于是当x变化时,f′(x),f(x)的变化情况如下表.
x
(0,2)
2
(2,+∞)
f′(x)
+
0
-
f(x)
ln 2-1
故f(x)在定义域上的极大值为f(x)极大值=f(2)=ln 2-1,无极小值.
(2)由(1)知,函数的定义域为(0,+∞),
f′(x)=-a=(x>0).
当a≤0时,f′(x)>0在(0,+∞)上恒成立,
即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;
当a>0时,当x∈时,f′(x)>0,
当x∈时,f′(x)<0,
故函数在x=处有极大值.
综上可知,当a≤0时,函数f(x)无极值点,
当a>0时,函数y=f(x)有一个极大值点,且为x=.
规律方法 运用导数求可导函数y=f(x)的极值的一般步骤:(1)先求函数y=f(x)的定义域,再求其导数f′(x);(2)求方程f′(x)=0的根;(3)检查导数f′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.
角度3 已知函数的极(最)值求参数的取值
【例1-3】 已知函数f(x)=ln x.
(1)求f(x)图象的过点P(0,-1)的切线方程;
(2)若函数g(x)=f(x)-mx+存在两个极值点x1,x2,求m的取值范围.
解 (1)f(x)的定义域为(0,+∞),且f′(x)=.
设切点坐标为(x0,ln x0),则切线方程为y=x+ln x0-1.
把点P(0,-1)代入切线方程,得ln x0=0,∴x0=1.
∴过点P(0,-1)的切线方程为y=x-1.
(2)因为g(x)=f(x)-mx+=ln x-mx+(x>0),
所以g′(x)=-m-==-,
令h(x)=mx2-x+m,
要使g(x)存在两个极值点x1,x2,
则方程mx2-x+m=0有两个不相等的正数根x1,x2.
故只需满足即可,解得01时,f′(x)>0,
当-2,则当x∈时,f′(x)<0;
当x∈(2,+∞)时,f′(x)>0.
所以f(x)在x=2处取得极小值.
若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0,
所以f′(x)>0.所以2不是f(x)的极小值点.
综上可知,a的取值范围是.
考点二 利用导数求函数的最值
【例2】 (2019·广东五校联考)已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.
解 (1)易知f(x)的定义域为(0,+∞),
当a=-1时,f(x)=-x+ln x,f′(x)=-1+=,
令f′(x)=0,得x=1.
当00;当x>1时,f′(x)<0.
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.
∴f(x)max=f(1)=-1.
∴当a=-1时,函数f(x)在(0,+∞)上的最大值为-1.
(2)f′(x)=a+,x∈(0,e],∈.
①若a≥-,则f′(x)≥0,从而f(x)在(0,e]上是增函数,
∴f(x)max=f(e)=ae+1≥0,不合题意.
②若a<-,令f′(x)>0得a+>0,结合x∈(0,e],解得00),求当下潜速度v取什么值时,总用氧量最少.
解 (1)由题意,下潜用时(单位时间),用氧量为×=+(升),水底作业时的用氧量为10×0.9=9(升),返回水面用时=(单位时间),用氧量为×1.5=(升),
因此总用氧量y=++9(v>0).
(2)y′=-=,令y′=0得v=10,
当010时,y′>0,函数单调递增.
若c<10 ,函数在(c,10)上单调递减,在(10,15)上单调递增,
∴当v=10时,总用氧量最少.
若c≥10,则y在[c,15]上单调递增,
∴当v=c时,这时总用氧量最少.
规律方法 1.利用导数解决生活中优化问题的一般步骤:
(1)设自变量、因变量,建立函数关系式y=f(x),并确定其定义域;
(2)求函数的导数f′(x),解方程f′(x)=0;
(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;
(4)回归实际问题作答.
2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.
【训练3】 (2017·全国Ⅰ卷)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为______.
解析 由题意,连接OD,交BC与点G,
由题意,OD⊥BC,设OG=x,则BC=2x,DG=5-x,三棱锥的高
h===,
S△ABC=·(2x)2·sin 60°=3x2,
则三棱锥的体积V=S△ABC·h=x2·=·,
令f(x)=25x4-10x5,x∈,
则f′(x)=100x3-50x4,
令f′(x)=0得x=2,当x∈(0,2)时,f′(x)>0,f(x)单调递增;
当x∈时,f′(x)<0,f(x)单调递减,
故当x=2时,f(x)取得最大值80,
则V≤×=4.
∴体积最大值为4 cm3.
答案 4
[思维升华]
1.求函数的极值、最值,通常转化为对函数的单调性的分析讨论,所以,研究函数的单调性、极值、最值归根结底都是对函数单调性的研究.
2.研究函数的性质借助数形结合的方法有助于问题的解决.函数的单调性常借助导函数的图象分析导数的正负;函数的极值常借助导函数的图象分析导函数的变号零点;函数的最值常借助原函数图象来分析最值点.
3.解函数的优化问题关键是从实际问题中抽象出函数关系,并求出函数的最值.
[易错防范]
1.求函数的极值、函数的优化问题易忽视函数的定义域.
2.已知极值点求参数时,由极值点处导数为0求出参数后,易忽视对极值点两侧导数异号的检验.
3.由极值、最值求参数时,易忽视参数应满足的前提范围(如定义域),导致出现了增解.
基础巩固题组
(建议用时:40分钟)
一、选择题
1.函数y=f(x)导函数的图象如图所示,则下列说法错误的是( )
A.(-1,3)为函数y=f(x)的递增区间
B.(3,5)为函数y=f(x)的递减区间
C.函数y=f(x)在x=0处取得极大值
D.函数y=f(x)在x=5处取得极小值
解析 由函数y=f(x)导函数的图象可知,f(x)的单调递减区间是(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),所以f(x)在x=-1,5取得极小值,在x=3取得极大值,故选项C错误.
答案 C
2.设a∈R,若函数y=ex+ax有大于零的极值点,则( )
A.a<-1 B.a>-1
C.a>- D.a<-
解析 因为y=ex+ax,所以y′=ex+a.
又函数y=ex+ax有大于零的极值点,
则方程y′=ex+a=0有大于零的解,
当x>0时,-ex<-1,所以a=-ex<-1.
答案 A
3.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于( )
A.11或18 B.11
C.18 D.17或18
解析 ∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,∴f(1)=10,且f′(1)=0,又f′(x)=3x2+2ax+b,
∴解得或
而当时,函数在x=1处无极值,故舍去.
∴f(x)=x3+4x2-11x+16,∴f(2)=18.
答案 C
4.函数f(x)=3x2+ln x-2x的极值点的个数是( )
A.0 B.1 C.2 D.无数
解析 函数定义域为(0,+∞),
且f′(x)=6x+-2=,
由于x>0,g(x)=6x2-2x+1的Δ=-20<0,
所以g(x)>0恒成立,故f′(x)>0恒成立,
即f(x)在定义域上单调递增,无极值点.
答案 A
5.(2019·安庆二模)已知函数f(x)=2ef′(e)ln x-(e是自然对数的底数),则f(x)的极大值为( )
A.2e-1 B.- C.1 D.2ln 2
解析 由题意知,f′(x)=-,
∴f′(e)=2f′(e)-,则f′(e)=.
因此f′(x)=-,令f′(x)=0,得x=2e.
∴f(x) 在(0,2e)上单调递增,在(2e,+∞)上单调递减.
∴f(x)在x=2e处取极大值f(2e)=2ln(2e)-2=2ln 2.
答案 D
二、填空题
6.函数f(x)=xe-x,x∈[0,4]的最大值是________.
解析 f′(x)=e-x-x·e-x=e-x(1-x),
令f′(x)=0,得x=1.
又f(0)=0,f(4)=,f(1)=e-1=,
∴f(1)=为最大值.
答案
7.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m∈[-1,1],则f(m
)的最小值是________.
解析 f′(x)=-3x2+2ax,由f(x)在x=2处取得极值知f′(2)=0,即-3×4+2a×2=0,故a=3.
由此可得f(x)=-x3+3x2-4.
f′(x)=-3x2+6x,由此可得f(x)在(-1,0)上单调递减,在(0,1)上单调递增,
∴当m∈[-1,1]时,f(m)min=f(0)=-4.
答案 -4
8.若函数f(x)=-x2+x+1在区间上有极值点,则实数a的取值范围是________.
解析 函数f(x)在区间上有极值点等价于f′(x)=0有2个不相等的实根且在内有根,由f′(x)=0有2个不相等的实根,得a<-2或a>2.由f′(x)=0在内有根,得a=x+在内有解,又x+∈,所以2≤a<.
综上,a的取值范围是.
答案
三、解答题
9.设函数f(x)=aln x-bx2(x>0),若函数f(x)在x=1处与直线y=-相切.
(1)求实数a,b的值;
(2)求函数f(x)在上的最大值.
解 (1)由f(x)=aln x-bx2(x>0),得f′(x)=-2bx,
∵函数f(x)在x=1处与直线y=-相切,
∴解得
(2)由(1)知,f(x)=ln x-x2,
则f′(x)=-x=,
当≤x≤e时,令f′(x)>0,得≤x<1,
令f′(x)<0,得10,当t∈(2,8)时,V′(t)<0,从而V(t)在(0,2)上单调递增,在(2,8)上单调递减,V(0)=8 640π,V(8)=3 520π,所以当t=8时,V(t)有最小值3 520π,此时金箍棒的底面半径为4 cm.
答案 4
14.设f(x)=xln x-ax2+(2a-1)x(常数a>0).
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.
解 (1)由f′(x)=ln x-2ax+2a,
可得g(x)=ln x-2ax+2a,x∈(0,+∞).
所以g′(x)=-2a=.
又a>0,
当x∈时,g′(x)>0,函数g(x)单调递增,
当x∈时,g′(x)<0,函数g(x)单调递减.
∴函数y=g(x)的单调递增区间为,单调递减区间为.
(2)由(1)知,f′(1)=0.
①当01,由(1)知f′(x)在内单调递增,可得当x∈(0,1)时,f′(x)<0,当x∈时,f′(x)>0.
所以f(x)在(0,1)内单调递减,在内单调递增.
所以f(x)在x=1处取得极小值,不合题意.
②当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意.
③当a>时,0<<1,当x∈时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f
′(x)<0,f(x)单调递减.
所以f(x)在x=1处取极大值,符合题意.
综上可知,实数a的取值范围为.