- 2021-06-16 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020届二轮复习小题考法——三角恒等变换与解三角形课时作业(全国通用)
课时跟踪检测(三)小题考法——三角恒等变换与解三角形 A组——10+7提速练 一、选择题 1.已知△ABC中,A=,B=,a=1,则b=( ) A.2 B.1 C. D. 解析:选D 由正弦定理=,得=,即=,所以b=,故选D. 2.在△ABC中,内角A,B,C的对边分别是a,b,c,若c=2a,bsin B-asin A= asin C,则sin B=( ) A. B. C. D. 解析:选A 由bsin B-asin A=asin C,得b2-a2=ac,∵c=2a,∴b=a, ∴cos B===,则sin B= =. 3.(2019届高三·温州十校联考)在△ABC中,若tan Atan B>1,则△ABC是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定 解析:选A 因为A和B都为三角形中的内角, 由tan Atan B>1,得1-tan Atan B<0, 且tan A>0,tan B>0,即A,B为锐角, 所以tan(A+B)=<0, 则A+B∈,即C为锐角, 所以△ABC是锐角三角形. 4.已知sin β=,且sin(α+β)=cos α,则tan(α+β)=( ) A.-2 B.2 C.- D. 解析:选A ∵sin β=,且<β<π, ∴cos β=-,tan β=-. ∵sin(α+β)=sin αcos β+cos αsin β=cos α, ∴tan α=-, ∴tan(α+β)==-2. 5.在△ABC中,内角A,B,C所对的边分别为a,b,c,且2asin A=(2sin B+sin C)b+(2c+b)sin C,则A=( ) A.60° B.120° C.30° D.150° 解析:选B 由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.由余弦定理a2=b2+c2-2bccos A,得cos A=-,又A为三角形的内角,故A=120°. 6.在△ABC中,内角A,B,C的对边分别是a,b,c,已知b=2,c=2,且C=,则△ABC的面积为( ) A.+1 B.+1 C.2 D. 解析:选B 由正弦定理=,得sin B==,又c>b,且B∈(0,π),所以B=,所以A=,所以△ABC的面积S=bcsin A=×2×2sin=×2×2×=+1. 7.(2018·衢州期中)在△ABC中,若B=2A,a=1,b=,则c=( ) A.2 B.2 C. D.1 解析:选B 在△ABC中,∵B=2A,a=1,b=, ∴由正弦定理=, 可得==, ∴cos A=,∴A=,B=,C=π-A-B=, ∴c==2. 8.在△ABC中,A=60°,BC=,D是AB边上不同于A,B的任意一点,CD=,△BCD的面积为1,则AC的长为( ) A.2 B. C. D. 解析:选D 由S△BCD=1,可得×CD×BC×sin∠DCB=1,即sin∠DCB=,所以cos∠DCB=或cos∠DCB=-,又∠DCB<∠ACB=180°-A-B=120°-B<120°,所以cos∠DCB>-,所以cos∠DCB=.在△BCD中,cos∠DCB==,解得BD=2,所以cos∠DBC==,所以sin∠DBC=. 在△ABC中,由正弦定理可得AC==,故选D. 9.(2019届高三·台州中学检测)在△ABC中,若AB=1,BC=2,则角C的取值范围是( ) A. B. C. D. 解析:选A 因为c=AB=1,a=BC=2,b=AC.根据两边之和大于第三边,两边之差小于第三边可知1∠BDC=,所以∠DAC<,又∠DAC=∠ABC+∠ACB,所以∠ACB<,则∠BCA=,所以cos∠BCA=.在△ABC中,AB2=AC2+BC2-2AC·BC·cos∠BCA=2+6-2×××=2,所以AB==AC,所以∠ABC=∠ACB=,在△BCD中,=,即=,解得CD=. 答案: 6.(2018·嘉兴测试)设△ABC的三边a,b,c所对的角分别为A,B,C,已知a2+2b2=c2,则=________;tan B的最大值为________. 解析:由正弦定理可得=·=·,再结合余弦定理可得=·=··=.由a2+2b2=c2,得==-3.由已知条件及大边对大角可知0<A<<C<π,从而由A+B+C=π可知tan B=-tan(A+C)=-=-=,因为<C<π,所以+ (-tan C)≥2=2(当且仅当tan C=-时取等号),从而tan B≤=,即tan B的最大值为. 答案:-3查看更多