- 2021-06-16 发布 |
- 37.5 KB |
- 16页
![](https://data.61taotao.com/file-convert/2020/10/20/08/06/381bdde1bbc9cc635f2b6ef677418f39/img/1.jpg)
![](https://data.61taotao.com/file-convert/2020/10/20/08/06/381bdde1bbc9cc635f2b6ef677418f39/img/2.jpg)
![](https://data.61taotao.com/file-convert/2020/10/20/08/06/381bdde1bbc9cc635f2b6ef677418f39/img/3.jpg)
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019届二轮复习函数的奇偶性与周期性学案(全国通用)
1.判断函数的奇偶性; 2.利用函数的奇偶性求参数; 3.考查函数的奇偶性、周期性和单调性的综合应用. 一、函数的奇偶性 奇偶性 定 义 图象特点 偶函数 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数 关于y轴对称 奇函数 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数 关于原点对称 二、周期性 1.周期函数 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期. 2.最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 三、必会结论 1.函数奇偶性的四个重要结论 (1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0. (2)如果函数f(x)是偶函数,那么f(x)=f(|x|). (3)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. (4)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.周期性的三个常用结论 对f(x)定义域内任一自变量的值x: (1)若f(x+a)=-f(x),则T=2a; (2)若f(x+a)=,则T=2a; (3)若f(x+a)=-,则T=2a.(a>0) 3.对称性的三个常用结论 (1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称; (2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称; (3)若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)关于点(b,0)中心对称. 高频考点一 判断函数的奇偶性 例1、判断下列函数的奇偶性: (1)f(x)=x2-|x|+1,x∈[-1,4]; (2)f(x)=log2(x+); (3)f(x)= (3)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x>0时,f(x)=x2+x,则当x<0时,-x>0,故f(-x)=x2-x=f(x); 当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数. 【变式探究】判断下列函数的奇偶性: (1)f(x)=+; (2)f(x)=; (3)f(x)= 解 (1)由得x2=3,解得x=±, 即函数f(x)的定义域为{-,}, 从而f(x)=+=0. 因此f(-x)=-f(x)且f(-x)=f(x), ∴函数f(x)既是奇函数又是偶函数. (2)由得定义域为(-1,0)∪(0,1),关于原点对称. ∴x-2<0,∴|x-2|-2=-x,∴f(x)=. 又∵f(-x)==-=-f(x), ∴函数f(x)为奇函数. (3)显然函数f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x<0时,-x>0, 则f(-x)=-(-x)2-x=-x2-x=-f(x); 当x>0时,-x<0, 则f(-x)=(-x)2-x=x2-x=-f(x); 综上可知:对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数. 【方法规律】判断函数的奇偶性,其中包括两个必备条件: (1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域; (2)判断f(x)与f(-x)是否具有等量关系. 在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立. 【变式探究】 (1)下列函数中,既不是奇函数,也不是偶函数的是( ) A.y=x+sin 2x B.y=x2-cos x C.y=2x+ D.y=x2+sin x (2)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( ) A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数 C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数 解析 (1)对于A,定义域为R,f(-x)=-x+sin 2(-x)=-(x+sin 2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+=2x+=f(x),为偶函数;y=x2+sin x既不是偶函数也不是奇函数,故选D. (2)依题意得对任意x∈R,都有f(-x)=-f(x),g(-x)=g(x),因此,f(-x)g(-x)=-f(x)g(x)=-[f(x)·g(x)],f(x)g(x)是奇函数,A错;|f(-x)|·g(-x)=|-f(x)|·g(x)=|f(x)|g(x),|f(x)|g(x)是偶函数,B错;f (-x)|g(-x)|=-f(x)|g(x)|=-[f(x)|g(x)|],f(x)|g(x)|是奇函数,C正确; |f(-x)·g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,|f(x)g(x)|是偶函数,D错. 答案 (1)D (2)C 高频考点二 函数奇偶性的应用 命题角度1 利用奇偶性求函数值 例1、已知f(x)=x5+ax3+bx-8,且f(-2)=10,则f(2)等于( ) A.-26 B.-18 C.-10 D.10 答案 A 解析 解法一:令g(x)=x5+ax3+bx,易知g(x)是R上的奇函数,从而g(-2)=-g(2),又f(x)=g(x)-8, ∴f(-2)=g(-2)-8=10,∴g(-2)=18, ∴g(2)=-g(-2)=-18. ∴f(2)=g(2)-8=-18-8=-26. 解法二:由已知条件,得 ①+②得f(2)+f(-2)=-16.又f(-2)=10, ∴f(2)=-26. 命题角度2 利用奇偶性求参数值 例2、若函数f(x)=xln (x+)为偶函数,则a= . 答案 1 解析 解法一:由题意得f(x)=xln (x+)=f(-x)=-xln(-x),所以+x=,解得a=1. 解法二:由f(x)为偶函数有ln (x+)为奇函数,令g(x)=ln (x+),有g(-x)=-g(x),以下同解法一. 命题角度3 利用奇偶性求解析式 例3、f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1,求f(x)的解析式. 命题角度4 利用奇偶性的图象特征解不等式 例4、已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是( ) A.(-∞,-1)∪(2,+∞) B.(-1,2) C.(-2,1) D.(-∞,-2)∪(1,+∞) 答案 C 解析 ∵f(x)是奇函数,∴当x<0时,f(x)=-x2+2x.作出函数f(x)的大致图象如图中实线所示,结合图象可知f(x)是R上的增函数,由f(2-a2)>f(a),得2-a2>a,解得-20). 【变式探究】 设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f= . 高频考点四 函数性质的综合应用 例4、(1)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)等于( ) A.-3 B.-1 C.1 D.3 (2)(若函数f(x)=xln(x+)为偶函数,则a= . 解析 (1)因为f(x)是偶函数,g(x)是奇函数,所以f(1)+g(1)=f(-1)-g(-1)=(-1)3+(-1)2+1=1. (2)f(x)为偶函数,则ln(x+)为奇函数, 所以ln(x+)+ln(-x+)=0, 则ln(a+x2-x2)=0,∴a=1. 答案 (1)C (2)1 【方法规律】(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据f(x)±f(x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值. (2)已知函数的奇偶性求函数值或解析式,首先抓住在已知区间上的解析式,将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式或函数值. 【变式探究】(1)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为( ) A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞) (2)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-4x,则f(x)= . 解析 (1)易知f(-x)==, 由f(-x)=-f(x),得=-, 即1-a2x=-2x+a,化简得a(1+2x)=1+2x,所以a=1, f(x)=,由f(x)>3,得0查看更多