- 2021-06-16 发布 |
- 37.5 KB |
- 72页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2018届一轮复习人教A版导数及其应用学案理(1)
专题04 导数及其应用 高考将以导数的几何意义为背景,重点考查运算及数形结合能力,导数的综合运用涉及的知识面广,综合的知识点多,形式灵活,是每年的必考内容,经常以压轴题的形式出现. 预测2018年高考仍将利用导数研究方程的根、函数的零点问题、含参数的不等式恒成立、能成立、实际问题的最值等形式考查. 1.导数的定义 f ′(x)= = . 2.导数的几何意义 函数y=f(x)在x=x0处的导数f ′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f ′(x0). 3.导数的运算 (1)基本初等函数的导数公式 ①c′=0(c为常数); ②(xm)′=mxm-1; ③(sinx)′=cosx; ④(cosx)′=-sinx; ⑤(ex)′=ex; ⑥(ax)′=axlna; ⑦(lnx)′=; ⑧(logax)′=. (2)导数的四则运算法则 ①[f(x)±g(x)]′=f ′(x)±g′(x); ②[f(x)·g(x)]′=f ′(x)g(x)+f(x)g′(x); ③[]′=. ④设y=f(u),u=φ(x),则y′x=y′uu′x. 4.函数的性质与导数 在区间(a,b)内,如果f ′(x)>0,那么函数f(x)在区间(a,b)上单调递增.如果f ′(x)<0,那么函数f(x)在区间(a,b)上单调递减. 5.利用定积分求曲线围成图形的面积的步骤:①画出图形;②确定被积函数;③求出交点坐标,确定积分的上、下限;④运用微积分基本定理计算定积分,求出平面图形的面积.特别注意平面图形的面积为正值,定积分值可能是负值. 被积函数为y=f(x),由曲线y=f(x)与直线x=a,x=b(a0时,S=f(x)dx; ②当f(x)<0时,S=-f(x)dx; ③当x∈[a,c]时,f(x)>0;当x∈[c,b]时,f(x)<0,则S=f(x)dx-f(x)dx. 考点一 导数的几何意义及应用 例1、(1)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________. 答案:1 (2)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________. 解析:基本法:令f(x)=x+ln x,求导得f′(x)=1+,f′(1)=2,又f(1)=1,所以曲线y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),即y=2x-1.设直线y=2x-1与曲线y=ax2+(a+2)x+1的切点为P(x0,y0),则y′|x=x0=2ax0+a+2=2,得a(2x0+1)=0, ∴a=0或x0=-,又ax+(a+2)x0+1=2x0-1,即ax+ax0+2=0,当a=0时,显然不满足此方程, ∴x0=-,此时a=8. 速解法:求出y=x+ln x在(1,1)处的切线为y=2x-1 由得ax2+ax+2=0, ∴Δ=a2-8a=0, ∴a=8或a=0(显然不成立). 答案:8 【变式探究】设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( ) A.0 B.1 C.2 D.3 解析:基本法:y′=a-,当x=0时,y′=a-1=2, ∴a=3,故选D. 答案:D 考点二 导数与函数的极值、最值 例2、(1)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( ) A.(2,+∞) B.(1,+∞) C.(-∞,-2) D.(-∞,-1) 解析:基本法:a=0时,不符合题意. a≠0时,f′(x)=3ax2-6x,令f′(x)=0, 得x1=0,x2=. 若a>0,则由图象知f(x)有负数零点,不符合题意. 则a<0,由图象结合f(0)=1>0知,此时必有f>0,即a×-3×+1>0,化简得a2>4,又a<0,所以a<-2,故选C. 速解法:若a>0,又∵f(0)=1,f(-1)=-a-2<0, 在(-1,0)处有零点,不符合题意. ∴a<0,若a=-,则f(x)=-x3-3x2+1 f′(x)=-4x2-6x=0,∴x=0,或x=-. 此时f为极小值且f<0,有三个零点,排除D. 答案:C (2)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ) A.∃x0∈R,f(x0)=0 B.函数y=f(x)的图象是中心对称图形 C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减 D.若x0是f(x)的极值点,则f′(x0)=0 解析:基本法:由三次函数的值域为R知,f(x)=0必有解,A项正确;因为f(x)=x3+ax2+bx+c的图象可由y=x3平移得到,所以y=f(x)的图象是中心对称图形,B项正确;若y=f(x)有极值点,则其导数y=f′(x)必有2个零点,设为x1,x2(x1<x2),则有f′(x)=3x2+2ax+b=3(x-x1)(x-x2),所以f(x)在(-∞,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,则x2为极小值点,所以C项错误,D项正确.选C. 速解法:联想f(x)的图象模型如图显然C错. 答案:C 【方法技巧】 1.函数图象是研究函数单调性、极值、最值最有利的工具. 2.可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f(x)=x3,当x=0时就不是极值点,但f′(0)=0. 3.极值点不是一个点,而是一个数x0,当x=x0时,函数取得极值;在x0处有f′(x0)=0是函数f(x)在x0处取得极值的必要不充分条件. 4.f′(x)在f′(x)=0的根的左右两侧的值的符号,如果“左正右负”,那么f(x)在这个根处取得极大值;如果“左负右正”,那么f(x)在这个根处取得极小值;如果左右不改变符号,即都为正或都为负,则f(x)在这个根处无极值. 【变式探究】 1.函数f(x)=ax3+bx2+cx-34(a,b,c∈R)的导函数为f′(x),若不等式f′(x)≤0的解集为{x|-2≤x≤3},且f(x)的极小值等于-115,则a的值是( ) A.- B. C.2 D.5 答案:C 考点三 导数与函数的单调性 例3、若函数f(x)=x2+ax+在是增函数,则a的取值范围是( ) A.[-1,0] B.[-1,+∞) C.[0,3] D.[3,+∞) 解析:基本法:由题意知f′(x)≥0对任意的x∈恒成立,又f′(x)=2x+a-,所以2x+a-≥0对任意的x∈恒成立,分离参数得a≥-2x,若满足题意,需a≥max.令h(x)=-2x,x∈.因为h′(x)=--2,所以当x∈时,h′(x)<0,即h(x)在上单调递减,所以h(x)<h=3,故a≥3. 速解法:当a=0时,检验f(x)是否为增函数,当a=0时, f(x)=x2+,f=+2=,f(1)=1+1=2, f>f(1)与增函数矛盾.排除A、B、C.故选D. 答案:D (2)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( ) A.(-∞,-2] B.(-∞,-1] C.[2,+∞) D.[1,+∞) 解析:基本法:依题意得f′(x)=k-≥0在(1,+∞) 上恒成立,即k≥在(1,+∞)上恒成立, ∵x>1,∴0<<1, ∴k≥1,故选D. 速解法:若k=1,则f′(x)=1-=在(1,+∞)上有f′(x)>0,f(x)=kx-ln x为增函数. 答案:D 【变式探究】 对于R上可导的任意函数f(x),若满足≤0,则必有( ) A.f(0)+f(2)>2f(1) B.f(0)+f(2)≤2f(1) C.f(0)+f(2)<2f(1) D.f(0)+f(2)≥2f(1) 解析:基本法:选A.当x<1时,f′(x)<0,此时函数f(x)递减,当x>1时,f′(x)>0,此时函数f(x)递增,∴当x=1时,函数f(x)取得极小值同时也取得最小值,所以f(0)>f(1),f(2)>f(1),则f(0)+f(2)>2f(1),故选A. 1.【2017课标II,理】已知函数,且。 (1)求; (2)证明:存在唯一的极大值点,且。 【答案】(1); (2)证明略。 【解析】(1)的定义域为 设,则等价于 因为 若a=1,则.当0<x<1时,单调递减;当x>1时,>0,单调递增.所以x=1是的极小值点,故 综上,a=1 (2)由(1)知 设 当时,;当时,,所以在单调递减,在 单调递增 又,所以在有唯一零点x0,在有唯一零点1,且当时,;当时,,当时,. 因为,所以x=x0是f(x)的唯一极大值点 由 由得 因为x=x0是f(x)在(0,1)的最大值点,由得 所以 2.【2017山东,理20】已知函数,,其中 是自然对数的底数. (Ⅰ)求曲线在点处的切线方程; (Ⅱ)令,讨论的单调性并判断有无极值,有极值时求出极值. 【答案】(1) (2)见解析 【解析】 (Ⅰ)由题意 又, 所以, 因此 曲线在点处的切线方程为 , 即 . (1)当时, 当时, , 单调递减, 当时, , 单调递增, 所以 当时取得极小值,极小值是 ; (2)当时, 由 得 , ①当时, , 当时, , 单调递增; 当时, , 单调递减; 当时, , 单调递增. 所以 当时取得极大值. 极大值为, 当时取到极小值,极小值是 ; ②当时, , 所以 当时, ,函数在上单调递增,无极值; 综上所述: 当时, 在上单调递减,在上单调递增, 函数有极小值,极小值是; 当时,函数在和和上单调递增,在上单调递减,函数有极大值,也有极小值, 极大值是 极小值是; 当时,函数在上单调递增,无极值; 当时,函数在和上单调递增, 在上单调递减,函数有极大值,也有极小值, 极大值是; 极小值是. 3.【2017天津,理20】设,已知定义在R上的函数在区间内有一个零点,为的导函数. (Ⅰ)求的单调区间; (Ⅱ)设,函数,求证:; (Ⅲ)求证:存在大于0的常数,使得对于任意的正整数,且 满足. 【答案】(Ⅰ)增区间是, ,递减区间是.(Ⅱ)见解析;(III)见解析. 【解析】(Ⅰ)解:由,可得, 进而可得.令,解得,或. 当x变化时,的变化情况如下表: x + - + ↗ ↘ ↗ 所以,的单调递增区间是,,单调递减区间是. (Ⅱ)证明:由,得, . 令函数,则.由(Ⅰ)知,当时, ,故当时, , 单调递减;当时, , 单调递增.因此,当时, ,可得. 令函数,则.由(Ⅰ)知, 在上单调递增,故当时, , 单调递增;当时, , 单调递减.因此,当时, ,可得. 所以, . (III)证明:对于任意的正整数 ,,且, 令,函数. 由(II)知,当时,在区间内有零点; 当时,在区间内有零点. 所以在内至少有一个零点,不妨设为,则. 由(I)知在上单调递增,故, 于是. 因为当时,,故在上单调递增, 所以在区间上除外没有其他的零点,而,故. 又因为,,均为整数,所以是正整数, 从而. 所以.所以,只要取,就有. 1. 【2016高考山东理数】若函数的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称具有T性质.下列函数中具有T性质的是( ) (A) (B) (C) (D) 【答案】A 【解析】当时,,,所以在函数图象存在两点,使条件成立,故A正确;函数的导数值均非负,不符合题意,故选A。 2.【2016年高考四川理数】设直线l1,l2分别是函数f(x)= 图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是( ) (A)(0,1) (B)(0,2) (C)(0,+∞) (D)(1,+∞) 【答案】A 3.【2016高考新课标2理数】若直线是曲线的切线,也是曲线的切线,则 . 【答案】 【解析】对函数求导得,对求导得,设直线与曲线相切于点,与曲线相切于点,则,由点在切线上得,由点在切线上得,这两条直线表示同一条直线,所以,解得. 4.【2016高考新课标3理数】已知为偶函数,当时,,则曲线在 点处的切线方程是_______________. 【答案】 【解析】当时,,则.又因为为偶函数,所以,所以,则切线斜率为,所以切线方程为,即. 5.【2016高考新课标1卷】(本小题满分12分)已知函数有两个零点. (I)求a的取值范围; (II)设x1,x2是的两个零点,证明:. 【答案】 【解析】 (Ⅰ). (i)设,则,只有一个零点. (ii)设,则当时,;当时,.所以在上单调递减,在上单调递增. 又,,取满足且,则 , 故存在两个零点. (iii)设,由得或. 若,则,故当时,,因此在上单调递增.又当时,,所以不存在两个零点. 若,则,故当时,;当时,.因此在单调递减,在单调递增.又当时, ,所以不存在两个零点. 综上,的取值范围为. (Ⅱ)不妨设,由(Ⅰ)知,,在上单调递减,所以等价于,即. 由于,而,所以 . 设,则. 所以当时,,而,故当时,. 从而,故. 6.【2016高考山东理数】(本小题满分13分) 已知. (I)讨论的单调性; (II)当时,证明对于任意的成立. 【答案】(Ⅰ)见解析;(Ⅱ)见解析 【解析】 (Ⅰ)的定义域为; . 当, 时,,单调递增; ,单调递减. 当时,. (1),, 当或时,,单调递增; 当时,,单调递减; (2)时,,在内,,单调递增; (Ⅱ)由(Ⅰ)知,时, ,, 令,. 则, 由可得,当且仅当时取得等号. 又, 设,则在单调递减, 因为, 所以在上存在使得 时,时,, 所以函数在上单调递增;在上单调递减, 由于,因此,当且仅当取得等号, 所以, 即对于任意的恒成立。 7.【2016高考江苏卷】(本小题满分16分) 已知函数. 设. (1)求方程的根; (2)若对任意,不等式恒成立,求实数的最大值; (3)若,函数有且只有1个零点,求的值。 【答案】(1)①0 ②4(2)1 【解析】 (1)因为,所以. ①方程,即,亦即, 所以,于是,解得. ②由条件知. 因为对于恒成立,且, 所以对于恒成立. 而,且, 所以,故实数的最大值为4. (2)因为函数只有1个零点,而, 所以0是函数的唯一零点. 因为,又由知, 所以有唯一解. 令,则, 从而对任意,,所以是上的单调增函数, 于是当,;当时,. 因而函数在上是单调减函数,在上是单调增函数. 下证. 若,则,于是, 又,且函数在以和为端点的闭区间上的图象不间断,所以在和之间存在的零点,记为. 因为,所以,又,所以与“0是函数的唯一零点”矛盾. 若,同理可得,在和之间存在的非0的零点,矛盾. 因此,. 于是,故,所以. 8.【2016高考天津理数】(本小题满分14分) 设函数,,其中 (I)求的单调区间; (II) 若存在极值点,且,其中,求证:; (Ⅲ)设,函数,求证:在区间上的最大值不小于. 【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)详见解析 当变化时,,的变化情况如下表: + 0 - 0 + 单调递增 极大值 单调递减 极小值 单调递增 所以的单调递减区间为,单调递增区间为,. (Ⅱ)证明:因为存在极值点,所以由(Ⅰ)知,且, 由题意,得,即, 进而. 又,且,由题意及(Ⅰ)知,存在唯一实数满足 ,且,因此,所以. (Ⅲ)证明:设在区间上的最大值为,表示两数的最大值.下面分三种情况讨论: (1)当时,,由(Ⅰ)知,在区间上单调递减,所以在区间上的取值范围为,因此 , 所以. (2)当时,,由(Ⅰ)和(Ⅱ)知,,, 所以在区间上的取值范围为,因此 . (3)当时,,由(Ⅰ)和(Ⅱ)知, ,, 所以在区间上的取值范围为,因此 . 综上所述,当时,在区间上的最大值不小于. 9.【2016高考新课标3理数】设函数,其中,记的最大值为. (Ⅰ)求; (Ⅱ)求; (Ⅲ)证明. 【答案】(Ⅰ);(Ⅱ);(Ⅲ)见解析. 【解析】 (Ⅰ). (Ⅱ)当时, . 因此. (Ⅰ)当时,在内无极值点,,,,所以. (Ⅱ)当时,由,知.又 ,所以. 综上, (Ⅲ)由(Ⅰ)得. 当时,. 当时,,所以. 当时,,所以. 10.【2016高考浙江理数】(本小题15分)已知,函数F(x)=min{2|x−1|,x2−2ax+4a−2}, 其中min{p,q}= (I)求使得等式F(x)=x2−2ax+4a−2成立的x的取值范围; (II)(i)求F(x)的最小值m(a); (ii)求F(x)在区间[0,6]上的最大值M(a). 【答案】(I);(II)(i);(ii). 【解析】 (Ⅰ)由于,故 当时,, 当时,. 所以,使得等式成立的的取值范围为. (Ⅱ)(ⅰ)设函数,, 则,, 所以,由的定义知,即 (ⅱ)当时, , 当时,. 所以,. 11.【2016高考新课标2理数】(Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域. 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】 (Ⅰ)的定义域为. 且仅当时,,所以在单调递增, 因此当时, 所以 (II) 由(I)知,单调递增,对任意 因此,存在唯一使得即, 当时,单调递减; 当时,单调递增. 因此在处取得最小值,最小值为 于是,由单调递增 所以,由得 因为单调递增,对任意存在唯一的 使得所以的值域是 综上,当时,有,的值域是 12.【2016年高考北京理数】(本小题13分) 设函数,曲线在点处的切线方程为, (1)求,的值; (2)求的单调区间. 【答案】(Ⅰ),;(2)的单调递增区间为. 解得;(2)由(Ⅰ)知. 由即知,与同号. 令,则. 所以,当时,,在区间上单调递减; 当时,,在区间上单调递增. 故是在区间上的最小值, 从而. 综上可知,,,故的单调递增区间为. 【2015高考江苏,19】(本小题满分16分) 已知函数. (1)试讨论的单调性; (2)若(实数c是a与无关的常数),当函数有三个不同的零点时,a的取值范围恰好是,求c的值. 【答案】(1)当时, 在上单调递增; 当时, 在,上单调递增,在上单调递减; 当时, 在,上单调递增,在上单调递减. (2) 【解析】(1),令,解得,. 当时,因为(),所以函数在上单调递增; 当时,时,,时,, 所以函数在,上单调递增,在上单调递减; 当时,时,,时,, 所以函数在,上单调递增,在上单调递减. (2)由(1)知,函数的两个极值为,,则函数 有三个 零点等价于,从而或. 又,所以当时,或当时,. 设,因为函数有三个零点时,的取值范围恰好是 ,则在上,且在上均恒成立, 【2015高考四川,理21】已知函数,其中. (1)设是的导函数,评论的单调性; (2)证明:存在,使得在区间内恒成立,且在内有唯一解. 【答案】(1)当时,在区间上单调递增, 在区间上单调递减;当时,在区间上单调递增.(2)详见解析. 【解析】(1)由已知,函数的定义域为, , 所以. 当时,在区间上单调递增, 在区间上单调递减; 当时,在区间上单调递增. (2)由,解得. 令. 则,. 故存在,使得. 令,. 由知,函数在区间上单调递增. 所以. 即. 当时,有,. 由(1)知,函数在区间上单调递增. 故当时,有,从而; 当时,有,从而; 所以,当时,. 综上所述,存在,使得在区间内恒成立,且在内有唯一解. 【2015高考广东,理19】设,函数. (1) 求的单调区间 ; (2) 证明:在上仅有一个零点; (3) 若曲线在点处的切线与轴平行,且在点处的切线与直线平行(是坐标原点),证明:. 【答案】(1);(2)见解析;(3)见解析. 【解析】(1)依题, ∴ 在上是单调增函数; (2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数. 又f(0)=1﹣a, ∵a>1.∴1﹣a<0 ∴f(0)<0.当x→+∞时,f(x)>0成立. ∴f(x)在(﹣∞,+∞)上有且只有一个零点 (3)证明:f'(x)=ex(x+1)2, 设点P(x0,y0)则)f'(x)=ex0(x0+1)2, ∵y=f(x)在点P处的切线与x轴平行,∴f'(x0)=0,即:ex0(x0+1)2=0, ∴x0=﹣1 将x0=﹣1代入y=f(x)得y0=.∴, ∴…10分 令;g(m)=em﹣(m+1)g(m)=em﹣(m+1), 则g'(m)=em﹣1,由g'(m)=0得m=0. 当m∈(0,+∞)时,g'(m)>0 当m∈(﹣∞,0)时,g'(m)<0 ∴g(m)的最小值为g(0)=0…12分 ∴g(m)=em﹣(m+1)≥0 ∴em≥m+1 ∴em(m+1)2≥(m+1)3 即: ∴m≤…14分 (2014·安徽卷) 设函数f(x)=1+(1+a)x-x2-x3,其中a>0. (1)讨论f(x)在其定义域上的单调性; (2)当x∈[0,1]时 ,求f(x)取得最大值和最小值时的x的值. (2)因为a>0,所以x1<0,x2>0, ①当a≥4时,x2≥1. 由(1)知,f(x)在[0,1]上单调递增, 所以f(x)在x=0和x=1处分别取得最小值和最大值. ②当01+2x,原不等式成立. ②假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立. 当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x. 所以当p=k+1时,原不等式也成立. 综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立. (2)方法一:先用数学归纳法证明an>c. ①当n=1时,由题设知a1>c成立. ②假设n=k(k≥1,k∈N*)时,不等式ak>c成立. 由an+1=an+a易知an>0,n∈N*. 当n=k+1时,=+a= 1+. 由ak>c>0得-1<-<<0. 由(1)中的结论得=>1+p· =. 因此a>c,即ak+1>c, 所以当n=k+1时,不等式an>c也成立. 综合①②可得,对一切正整数n,不等式an>c均成立. 再由=1+可得<1, 即an+1查看更多