【数学】2020届一轮复习(文)通用版1-2命题及其关系、充分条件与必要条件作业

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届一轮复习(文)通用版1-2命题及其关系、充分条件与必要条件作业

课时跟踪检测(二) 命题及其关系、充分条件与必要条件 ‎1.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的(  )‎ A.逆命题        B.否命题 C.逆否命题 D.否定 解析:选B 命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.‎ ‎2.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为(  )‎ A.“若x=4,则x2+3x-4=0”为真命题 B.“若x≠4,则x2+3x-4≠0”为真命题 C.“若x≠4,则x2+3x-4≠0”为假命题 D.“若x=4,则x2+3x-4=0”为假命题 解析:选C 根据逆否命题的定义可以排除A、D,因为x2+3x-4=0,所以x=-4或1,故原命题为假命题,即逆否命题为假命题.‎ ‎3.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(  )‎ A.真,假,真        B.假,假,真 C.真,真,假 D.假,假,假 解析:选B 当z1,z2互为共轭复数时,设z1=a+bi(a,b∈R),则z2=a-bi,则|z1|=|z2|=,所以原命题为真,故其逆否命题为真.取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,所以其逆命题为假,故其否命题也为假.‎ ‎4.(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(  )‎ A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:选B a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.‎ ‎5.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系中,下列说法正确的是(  )‎ ‎①命题α是命题β的否命题,且命题γ是命题β的逆命题;‎ ‎②命题α是命题β的逆命题,且命题γ是命题β的否命题;‎ ‎③命题β是命题α的否命题,且命题γ是命题α的逆否命题.‎ A.①③ B.②‎ C.②③ D.①②③‎ 解析:选A 本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.‎ ‎6.(2018·北京高考)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的(  )‎ A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:选C 由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,‎ 即a2+9b2-6a·b=9a2+b2+6a·b.‎ 因为a,b均为单位向量,所以a2=b2=1,‎ 所以a·b=0,能推出a⊥b.‎ 由a⊥b得|a-3b|=,|3a+b|=,‎ 能推出|a-3b|=|3a+b|,‎ 所以“|a-3b|=|3a+b|”是“a⊥b”的充分必要条件.‎ ‎7.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的(  )‎ A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析:选C 设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C= {(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然CD,所以BA.于是“x≠y”是 “cos x≠cos y”的必要不充分条件.‎ ‎8.(2019·湘东五校联考)“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是(  )‎ A.m> B.00 D.m>1‎ 解析:选C 若不等式x2-x+m>0在R上恒成立,则Δ=(-1)2-4m<0,解得m>,因此当不等式x2-x+m>0在R上恒成立时,必有m>0,但当m>0时,不一定推出不等式在R上恒成立,故所求的必要不充分条件可以是m>0.‎ ‎9.在△ABC中,“A=B”是“tan A=tan B”的________条件.‎ 解析:由A=B,得tan A=tan B,反之,若tan A=tan B,则A=B+kπ,k∈Z.‎ ‎∵0<A<π,0-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m=-3,n=-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.‎ 答案:3‎ ‎11.已知p(x):x2+2x-m>0,若p(1)是假命题,p(2)是真命题,则实数m的取值范围为________.‎ 解析:因为p(1)是假命题,所以1+2-m≤0,解得m≥3.‎ 又p(2)是真命题,所以4+4-m>0,解得m<8.‎ 故实数m的取值范围为[3,8).‎ 答案:[3,8)‎ ‎12.(2019·齐鲁名校调研)给出下列说法:‎ ‎①“若x+y=,则sin x=cos y”的逆命题是假命题;‎ ‎②“在△ABC中,sin B>sin C是B>C的充要条件”是真命题;‎ ‎③“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件;‎ ‎④命题“若x<-1,则x2-2x-3>0”的否命题为“若x≥-1,则x2-2x-3≤0”.‎ 以上说法正确的是________(填序号).‎ 解析:对于①,“若x+y=,则sin x=cos y”的逆命题是“若sin x=cos y,则x+y=”,当x=0,y=时,有sin x=cos y成立,但x+y=,故逆命题为假命题, ①正确;‎ 对于②,在△ABC中,由正弦定理得sin B>sin C⇔b>c⇔B>C,②正确;‎ 对于③,“a=±1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件,故③错误;‎ 对于④,根据否命题的定义知④正确.‎ 答案:①②④‎ ‎13.写出命题“已知a,b∈R,若关于x的不等式x2+ax+b≤0有非空解集,则a2≥4b”的逆命题、否命题、逆否命题,并判断它们的真假.‎ 解:(1)逆命题:已知a,b∈R,若a2≥4b,则关于x的不等式x2+ax+b≤0有非空解集,为真命题.‎ ‎(2)否命题:已知a,b∈R,若关于x的不等式x2+ax+b≤0没有非空解集,则a2<4b,为真命题.‎ ‎(3)逆否命题:已知a,b∈R,若a2<4b,则关于x的不等式x2+ax+b≤0没有非空解集,为真命题.‎
查看更多

相关文章

您可能关注的文档