2018届高三数学一轮复习: 第8章 第6节 双曲线
第六节 双曲线
[考纲传真] 1.了解双曲线的实际背景,了解双曲线在刻画现实世界和解决实际问题中的作用.2.了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).3.理解数形结合的思想.4.了解双曲线的简单应用.
1.双曲线的定义
(1)平面内与两个定点F1,F2(|F1F2|=2c>0)的距离之差的绝对值为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.
(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,
其中a,c为常数且a>0,c>0.
①当2a<|F1F2|时,M点的轨迹是双曲线;
②当2a=|F1F2|时,M点的轨迹是两条射线;
③当2a>|F1F2|时,M点不存在.
2.双曲线的标准方程和几何性质
标准方程
-=1
(a>0,b>0)
-=1
(a>0,b>0)
图形
性质
范围
x≥a或x≤-a,y∈R
x∈R,y≤-a或y≥a
对称性
对称轴:坐标轴,对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±x
y=±x
离心率
e=,e∈(1,+∞),其中c=
a,b,c的关系
c2=a2+b2(c>a>0,c>b>0)
3.等轴双曲线
实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y=±x,离心率为e=.
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )
(2)方程-=1(mn>0)表示焦点在x轴上的双曲线.( )
(3)双曲线方程-=λ(m>0,n>0,λ≠0)的渐近线方程是-=0,即±=0.( )
(4)等轴双曲线的渐近线互相垂直,离心率等于.( )
[答案] (1)× (2)× (3)√ (4)√
2.(教材改编)已知双曲线-=1(a>0)的离心率为2,则a=( )
A.2 B.
C. D.1
D [依题意,e===2,
∴=2a,则a2=1,a=1.]
3.(2017·福州质检)若双曲线E:-=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于( )
A.11 B.9
C.5 D.3
B [由题意知a=3,b=4,∴c=5.由双曲线的定义||PF1|-|PF2||=|3-|PF2||=2a=6,∴|PF2|=9.]
4.(2016·全国卷Ⅰ)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )
A.(-1,3) B.(-1,)
C.(0,3) D.(0,)
A [∵原方程表示双曲线,且两焦点间的距离为4.
∴则
因此-1
0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=__________.
2 [双曲线-=1的渐近线方程为y=±x,易得两条渐近线方程互相垂直,由双曲线的对称性知=1.
又正方形OABC的边长为2,所以c=2,
所以a2+b2=c2=8,因此a=2.]
双曲线的定义及应用
(2015·全国卷Ⅰ改编)已知F是双曲线C:x2-=1的右焦点,P是C的左支上一点,A(0,6).则△APF周长的最小值为__________.
32 [由双曲线方程x2-=1可知,a=1,c=3,
故F(3,0),F1(-3,0),
当点P在双曲线左支上运动时,由双曲线定义知|PF|-|PF1|=2.所以|PF
|=|PF1|+2,
从而△APF的周长=|AP|+|PF|+|AF|=|AP|+|PF1|+2+|AF|.
因为|AF|==15为定值,
所以当(|AP|+|PF1|)最小时,△APF的周长最小,A,F1,P三点共线.
又因为|AP|+|PF1|≥|AF1|=|AF|=15.
所以△APF周长的最小值为15+15+2=32.]
[规律方法] 1.应用双曲线的定义需注意的问题:
在双曲线的定义中,要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点间的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.同时需注意定义的转化应用.
2.在焦点三角形中,注意定义、余弦定理的活用,常将||PF1|-|PF2||=2a平方,建立|PF1|·|PF2|间的联系.
[变式训练1] 已知双曲线C的离心率为2,焦点为F1,F2,点A在C上.若|F1A|=2|F2A|,则cos∠AF2F1=( )
A. B.
C. D.
A [由e==2得c=2a,如图,由双曲线的定义得|F1A|-|F2A|=2a.
又|F1A|=2|F2A|,故|F1A|=4a,
|F2A|=2a,
∴cos∠AF2F1==.]
双曲线的标准方程
(1)(2017·广州模拟)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为( )
【导学号:01772317】
A.-=1 B.-=1
C.-=1 D.-=1
(2)(2016·天津高考)已知双曲线-=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
(1)C (2)D [(1)由焦点F2(5,0)知c=5.
又e==,得a=4,b2=c2-a2=9.
∴双曲线C的标准方程为-=1.
(2)由题意知双曲线的渐近线方程为y=±x,圆的方程为x2+y2=4,联立
解得或
即第一象限的交点为.
由双曲线和圆的对称性得四边形ABCD为矩形,其相邻两边长为,,故=2b,得b2=12.
故双曲线的方程为-=1.故选D.]
[规律方法] 1.确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件.“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).
2.对于共焦点、共渐近线的双曲线方程,可灵活设出恰当的形式求解.若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).
[变式训练2] (1)(2015·全国卷Ⅱ)已知双曲线过点(4,),且渐近线方程为y=±x,则该双曲线的标准方程为________________.
(2)设椭圆C1的离心率为,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为__________.
(1)-y2=1 (2)-=1 [(1)∵双曲线的渐近线方程为y=±x,
∴可设双曲线的方程为x2-4y2=λ(λ≠0).
∵双曲线过点(4,),
∴λ=16-4×()2=4,
∴双曲线的标准方程为-y2=1.
(2)由题意知椭圆C1的焦点坐标为F1(-5,0),F2(5,0),设曲线C2上的一点P,则||PF1|-|PF2||=8.
由双曲线的定义知:a=4,b=3.
故曲线C2的标准方程为-=1,即-=1.]
双曲线的简单几何性质
(1)(2016·全国卷Ⅱ)已知F1,F2是双曲线E:-=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( )
A. B.
C. D.2
(2)(2017·石家庄调研)设双曲线-=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F作A1A2的垂线与双曲线交于B,C两点.若A1B⊥A2C,则该双曲线的渐近线为__________.
【导学号:01772318】
(1)A (2)x±y=0 [(1)如图,因为MF1⊥x轴,所以|MF1|=.
在Rt△MF1F2中,由sin∠MF2F1=得
tan∠MF2F1=.
所以=,即=,即=,
整理得c2-ac-a2=0,
两边同除以a2得e2-e-1=0.
解得e=(负值舍去).
(2)由题设易知A1(-a,0),A2(a,0),B,C.
因为A1B⊥A2C,
所以·=-1,整理得a=b.
因此该双曲线的渐近线为y=±x,即x±y=0.]
[规律方法] 1.(1)求双曲线的渐近线,要注意双曲线焦点位置的影响;(2)求离心率的关键是确定含a,b,c的齐次方程,但一定注意e>1这一条件.
2.双曲线中c2=a2+b2,可得双曲线渐近线的斜率与离心率的关系=.抓住双曲线中“六点”、“四线”、“两三角形”,研究a,b,c,e间相互关系及转化,简化解题过程.
[变式训练3] (2015·全国卷Ⅱ)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )
A. B.2
C. D.
D [不妨取点M在第一象限,如图所示,设双曲线方程为-=1(a>0,b>0),则|BM|=|AB|=2a,∠MBx=180°-120°=60°,
∴M点的坐标为.
∵M点在双曲线上,∴-=1,a=b,
∴c=a,e==.故选D.]
[思想与方法]
1.求双曲线标准方程的主要方法:
(1)定义法:由条件判定动点的轨迹是双曲线,求出a2,b2,得双曲线方程.
(2)待定系数法:即“先定位,后定量”,如果不能确定焦点的位置,应注意分类讨论或恰当设置简化讨论.
①若已知双曲线过两点,焦点位置不能确定,可设方程为Ax2+By2=1(AB<0).
②当已知双曲线的渐近线方程bx±ay=0,求双曲线方程时,可设双曲线方程为b2x2-a2y2=λ(λ≠0).
③与双曲线-=1有相同的渐近线的双曲线方程可设为-=λ(λ≠0).
2.已知双曲线的标准方程求双曲线的渐近线方程,只需将双曲线的标准方程中“1”改为“0”即可.
[易错与防范]
1.区分双曲线中a,b,c的关系与椭圆中a,b,c的关系,在椭圆中a2=b2+c2,在双曲线中c2=a2+b2.
2.双曲线的离心率大于1,椭圆的离心率e∈(0,1).求它们的离心率,不要忽视这一前提条件,否则会产生增解或扩大取值范围.
3.直线与双曲线有一个公共点时,不一定相切,也可能直线与渐近线平行.