- 2021-06-15 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2021届一轮复习人教版(文理通用)第10章第1讲随机事件的概率(文)、第4讲随机事件的概率(理)作业
对应学生用书[练案71理] 第二讲 排列与组合(理) A组基础巩固 一、选择题 1.(2020·长沙模拟)将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放2支,则不同的放法有( C ) A.56种 B.84种 C.112种 D.28种 [解析] 根据题意先将7支不同的笔分成两组,若一组2支,另一组5支,有C种分组方法;若一组3支,另一组4支,有C种分组方法.然后分配到2个不同的笔筒中,故共有(C+C)A=112种放法. 2.(2019·南京模拟)某校从甲、乙、丙等8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙都去或都不去,则不同的选派方案有( B ) A.900种 B.600种 C.300种 D.150种 [解析] 第一类,甲去,则丙一定去,乙一定不去,再从剩余的5名教师中选2名,不同的选派方案有C×A=240(种);第二类,甲不去,则丙一定不去,乙可能去也可能不去,从乙和剩余的5名教师中选4名,不同的选派方案有C×A=360(种).所以不同的选派方案共有240+360=600(种),故选B. 3.(2020·河南洛阳尖子生联考)某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为( C ) A.16 B.18 C.24 D.32 [解析] 由题意知,剩余的4个车位连在一起,把剩余的4个车位看成一个元素,且只有一种排法,再加上有3辆不同型号的车,所有共有四个不同的元素,其中四个元素的排列共有A=24种,故选C. 4.(2019·湖北八校联考)将5个人从左至右排成一行,最左端只能排成甲或乙,最右端不能排甲,则不同的排法共有( B ) A.36种 B.42种 C.48种 D.60种 [解析] 甲排左端有A=24种;乙排左端有CA=18种;故共有24+18=42种排法.选B. 5.在1,2,3,4,5,6这六个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有( A ) A.60个 B.36个 C.24个 D.18个 [解析] 依题意,所选的三位数字有两种情况:(1)3个数字都是偶数,有A种方法;(2)3个数字中有2个奇数,1个是偶数,有CCA种方法,故共有A+CCA=60种方法,故选A. 6.(2020·四省八校质检)某中学《同唱华夏情,共圆中国梦》文艺演出于2019年11月20日在学校演艺大厅开幕,开幕式文艺表演共由6个节目组成,若考虑整体效果,对节目演出顺序有如下要求:节目《文明之光》必须排在前三位,且节目《一带一路》、《命运与共》必须排在一起,则开幕式文艺表演演出顺序的编排方案共有( A ) A.120种 B.156种 C.188种 D.240种 [解析] 由题意,AA+AAA+AAA+AA=120. 7.(2020·河北衡水月考)3个单位从4名大学毕业生中选聘工作人员,若每个单位至少选聘1人(4名大学毕业生不一定能选聘上),则不同的选聘方法种数为( A ) A.60 B.36 C.24 D.42 [解析] 当4名大学毕业生都被选聘上,则有CA=6×6=36种,不同的选聘方法,当4名大学毕业生有3名被选聘上,则有A=24种不同的选聘方法,由分类加法计数原理,得不同的选聘方法种数为36+24=60种. 8.(2019·福建莆田期中)某学校需从3名男生和2名女生中选出4人,分派到甲、乙、丙三地参加义工活动,其中甲地需要选派2人且至少有1名女生,乙地和丙地各需要选派1人,则不同的选派方法的种数是( D ) A.18 B.24 C.36 D.42 [解析] 由题设可分两类:一是甲地只选派1名女生,先考虑甲地有CC种情形,后考虑乙、丙两地,有A种情形,共有CCA=36(种)情形;二是甲地选派2名女生,则甲地有C种情形,乙、丙两地有A种情形,共有CA=6(种)情形.由分类加法计数原理可知共有36+6=42(种)情形,故选D. 9.(2020·广东化州模拟)“中国梦”的英文翻译为“China Dream”,其中China又可以简写为CN,从“CN Dream”中取6个不同的字母排成一排,含有“ea”字母组合(顺序不变)的不同排列共有( C ) A.360种 B.480种 C.600种 D.720种 [解析] 根据题意,分2步进行分析:先从其他5个字母中任取4个,有C=5种选法,再将“ea”看成一个整体,与选出的4个字母全排列,有A=120种情况,则不同的排列有5×120=600种,故选C. 10.(2019·广西桂林、崇左模拟)安排3名志愿者完成5项不同的工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( B ) A.240种 B.150种 C.125种 D.120种 [解析] 把5项工作分成三组,有CC×+CC×=10+15=25种方法,再把工作分配给三个志愿者有A=6种方法,由乘法分步原理得共有25×6=150种方法.故选B. 二、填空题 11.(2020·广东揭阳模拟)某地铁站有A,B,C,D,E五个自动检票口,有4人一同进站,恰好2人通过同一检票口进站,另2人各自选择不同的检票口检票进站,则不同的检票进站方式的种数为360 . [解析] 根据题意,分2步: ①先在4人中任选2人,从五个自动检票口中任选1个进站,有CA=30(种)方式, ②在剩下的4个检票口中任选2个,安排剩下的2人进站,有A=12(种)方式. 则不同的检票进站方式的种数为30×12=360. 12.由1,2,3,4,5组成没有重复数字且1,2都不与5相邻的五位数的个数是36 . [解析] 当5排首尾位时有CCA=24(个),当5不排首、尾位时有CAA=12(个),故共有24+12=36(个). 13.(2019·湖南益阳模拟)包括甲、乙、丙在内的5个人排一列,则甲、乙不相邻,且丙不排在两端的排法种数为48 . [解析] 甲、乙不相邻的排法种数:AA=72,其中丙排在两端的排法种数为:2AA=24,所求种数为72-24=48. 14.(2020·山西长治联考)安排A,B,C,D,E,F共6名义工照顾甲,乙,丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A不安排照顾老人甲,义工B不安排照顾老人乙,则安排方法共有42 种(请用数字作答). [解析] 义工A照顾老人乙,有CC=24种,义工A不照顾老人乙,有CC=18种,∴共有24+18=42种安排方法. B组能力提升 1.(2020·北京市东城区模拟) 教室的图书角摆放了一些阅读书目,其中有3本相同的论语、6本互不相同的近代文学名著,现从这9本书中选出3本,则不同的选法种数为( B ) A.84 B.42 C.41 D.35 [解析] C+C+C+1=42.故选B. 2.(2020·河北衡水中学全国联考)“学习强国”学习平台是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门APP,该款软件主要设有“阅读文章”“视听学习”两个学习板块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题板块,某人在学习过程中,“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有( C ) A.192种 B.240种 C.432种 D.528种 [解析] 若“阅读文章”与“视听学习”相邻,则有A×A种可能;若“阅读文章”与“视听学习”相隔一个答题板块,则有A×C×A种可能,故共有432种可能,故选C. 3.(2019·福建南平质检)从6位女学生和5位男学生中选出3位学生,分别担任数学、信息技术、通用技术科代表,要求这3位科代表中男、女学生都要有,则不同的选法共有( A ) A.810种 B.840种 C.1 620种 D.1 680种 [解析] 不考虑男女生共有A=990种; 全部是男生的有A=60种; 全部是女生的有A=120种; 所以男、女学生都有的共有990-60-120=810种. 4.(2019·湖北省十堰市模拟)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有( B ) A.72种 B.36种 C.24种 D.18种 [解析] 2名内科医生,每个村一名,有2种方法,若甲村有1名外科医生,2名护士,则有CC=9种方法,若甲村有2名外科医生,1名护士,则有CC=9种方法.故共有2×(9+9)=36种分配方案,选B. 5.(2019·浙北四校模拟)有6个人站成前后二排,每排3人,若甲、乙两人左右、前后均不相邻,则不同的站法种数为( A ) A.384 B.480 C.768 D.240 [解析] 如果甲站在边上甲有4个位置可选,乙有3个位置可选,其余的4人任意排,此时的排法种数为4×3×A=288.如果甲站在中间,甲有2个位置可选,乙有2个位置可选,其余的4人任意排,此时的排法种数是2×2×A=96.根据分类计数原理,所有的不同的站法数为288+96=384.查看更多