- 2022-09-27 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2017沪科版高中物理必修一第5章《牛顿运动定律的案例分析》word学案
学案4 牛顿运动定律的案例分析[学习目标定位] 1.掌握应用牛顿运动定律解决动力学问题的基本思路和方法.2.学会处理动力学的两类基本问题.一、牛顿运动定律的适用范围研究表明,通常宏观物体做低速(即远小于光速)运动时,都服从牛顿运动定律.二、动力学的两类基本问题1.从受力确定运动情况求解此类题的思路是:已知物体的受力情况,根据牛顿第二定律,求出物体的加速度,再由物体的初始条件,根据运动学规律求出未知量(速度、位移、时间等),从而确定物体的运动情况.2.从运动情况确定受力求解此类题的思路是:根据物体的运动情况,利用运动学公式求出加速度,再根据牛顿第二定律就可以确定物体所受的力,从而求得未知的力,或与力相关的某些量,如动摩擦因数、劲度系数、力的角度等.三、解决动力学问题的关键对物体进行正确的受力分析和运动情况分析,并抓住受力情况和运动情况之间联系的桥梁——加速度.一、从受力确定运动情况已知物体的受力情况求得a,→求得s、v0、vt、t.例1 如图1所示,质量m=2kg的物体静止在水平地面上,物体与水平面间的动摩擦因数为0.25,现对物体施加一个大小F=8N、与水平方向成θ=37°角斜向上的拉力,已知sin37°=0.6,cos37°=0.8,g取10m/s2.求:图1(1)画出物体的受力图,并求出物体的加速度;(2)物体在拉力作用下5s末的速度大小;(3)物体在拉力作用下5s内通过的位移大小.\n解析 (1)对物体受力分析如图:由图可得:解得:a=1.3m/s2,方向水平向右(2)vt=at=1.3×5m/s=6.5m/s(3)s=at2=×1.3×52m=16.25m答案 (1)见解析图 1.3m/s2,方向水平向右(2)6.5m/s (3)16.25m二、从运动情况确定受力已知物体运动情况求得a物体受力情况.例2 民用航空客机的机舱除通常的舱门外还设有紧急出口,发生意外情况的飞机着陆后,打开紧急出口的舱门,会自动生成一个由气囊组成的斜面,机舱中的乘客就可以沿斜面迅速滑行到地面上.若某型号的客机紧急出口离地面高度为4.0m,构成斜面的气囊长度为5.0m.要求紧急疏散时,乘客从气囊上由静止下滑到地面的时间不超过2.0s(g取10m/s2),则:(1)乘客在气囊上下滑的加速度至少为多大?(2)气囊和下滑乘客间的动摩擦因数不得超过多少?解析 (1)由题意可知,h=4.0m,L=5.0m,t=2.0s.设斜面倾角为θ,则sinθ=.乘客沿气囊下滑过程中,由L=at2得a=,代入数据得a=2.5m/s2.(2)在乘客下滑过程中,对乘客受力分析如图所示,沿x轴方向有mgsinθ-f=ma,沿y轴方向有N-mgcosθ=0,又f=μN,联立方程解得μ=≈0.92.答案 (1)2.5m/s2 (2)0.92针对训练 质量为0.1kg的弹性球从空中某高度由静止开始下落,该下落过程对应的v—t图像如图2所示.弹性球与水平地面相碰后离开地面时的速度大小为碰撞前的\n.设球受到的空气阻力大小恒为f,取g=10m/s2,求:图2(1)弹性球受到的空气阻力f的大小;(2)弹性球第一次碰撞后反弹的高度h.答案 (1)0.2N (2)0.375m解析 (1)由v-t图像可知,弹性球下落过程的加速度为a1==m/s2=8m/s2根据牛顿第二定律,得mg-f=ma1所以弹性球受到的空气阻力f=mg-ma1=(0.1×10-0.1×8)N=0.2N(2)弹性球第一次反弹后的速度v1=×4m/s=3m/s根据牛顿第二定律mg+f=ma2,得弹性球上升过程的加速度为a2==m/s2=12m/s2根据v-v=-2a2h,得弹性球第一次反弹的高度h==m=0.375m.三、整体法和隔离法在连接体问题中的应用1.整体法:把整个连接体系统看做一个研究对象,分析整体所受的外力,运用牛顿第二定律列方程求解.其优点在于它不涉及系统内各物体之间的相互作用力.2.隔离法:把系统中某一物体(或一部分)隔离出来作为一个单独的研究对象,进行受力分析,列方程求解.其优点在于将系统内物体间相互作用的内力转化为研究对象所受的外力,容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单.注意 整体法主要适用于各物体的加速度相同,不需要求内力的情况;隔离法对系统中各部分物体的加速度相同或不相同的情况均适用.例3 如图3所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m1和m2.拉力F1和F2方向相反,与轻线沿同一水平直线,且F1>F2.试求在两个物块运动过程中轻线的拉力T的大小.图3解析 以两物块整体为研究对象,根据牛顿第二定律得\nF1-F2=(m1+m2)a①隔离物块m1,由牛顿第二定律得F1-T=m1a②由①②两式解得T=答案 很多动力学问题中,是先分析合力列牛顿第二定律方程,还是先分析运动情况列运动学方程,并没有严格的顺序要求,有时可以交叉进行.但不管是哪种情况,其解题的基本思路都可以概括为六个字:“对象、受力、运动”,即:(1)明确研究对象;(2)对物体进行受力分析,并进行力的运算,列牛顿第二定律方程;(3)分析物体的运动情况和运动过程,列运动学方程;(4)联立求解或定性讨论.1.(从受力确定运动情况)一个滑雪运动员从静止开始沿山坡滑下,山坡的倾角θ=30°,如图4所示,滑雪板与雪地间的动摩擦因数是0.04,求5s内滑下来的路程和5s末速度的大小(运动员一直在山坡上运动).图4答案 58.2m 23.3m/s解析 以滑雪运动员为研究对象,受力情况如图所示.研究对象的运动状态为:垂直于山坡方向,处于平衡状态;沿山坡方向,做匀加速直线运动.将重力mg沿垂直于山坡方向和平行于山坡方向分解,据牛顿第二定律列方程:N-mgcosθ=0①mgsinθ-f=ma②又因为f=μN③由①②③可得:a=g(sinθ-μcosθ)\n故s=at2=g(sinθ-μcosθ)t2=×10×(-0.04×)×52m≈58.2mvt=at=10×(-0.04×)×5m/s≈23.3m/s2.(从运动情况确定受力)一物体沿斜面向上以12m/s的初速度开始滑动,它沿斜面向上以及沿斜面向下滑动的v-t图像如图5所示,求斜面的倾角θ以及物体与斜面间的动摩擦因数μ.(g取10m/s2)图5答案 30° 解析 由题图可知上滑过程的加速度大小为:a上=m/s2=6m/s2,下滑过程的加速度大小为:a下=m/s2=4m/s2上滑过程和下滑过程对物体受力分析如图上滑过程a上==gsinθ+μgcosθ下滑过程a下=gsinθ-μgcosθ,联立解得θ=30°,μ=3.(整体法和隔离法的应用)如图6所示,质量分别为m1和m2的物块A、B,用劲度系数为k的轻弹簧相连.当用力F沿倾角为θ的固定光滑斜面向上拉两物块,使之共同加速运动时,弹簧的伸长量为多少?图6\n答案 解析 对整体分析得:F-(m1+m2)gsinθ=(m1+m2)a①隔离A得:kx-m1gsinθ=m1a②联立①②得x=题组一 从受力确定运动情况1.粗糙水平面上的物体在水平拉力F作用下做匀加速直线运动,现使F不断减小,则在滑动过程中( )A.物体的加速度不断减小,速度不断增大B.物体的加速度不断增大,速度不断减小C.物体的加速度先变大再变小,速度先变小再变大D.物体的加速度先变小再变大,速度先变大再变小答案 D解析 合力决定加速度的大小,滑动过程中物体所受合力是拉力和地面摩擦力的合力.因为F逐渐减小,所以合力先减小后反向增大,而速度是增大还是减小与加速度的大小无关,而是要看加速度与速度的方向是否相同.前一阶段加速度与速度方向同向,所以速度增大,后一阶段加速度与速度方向相反,所以速度减小,因此D正确.2.A、B两物体以相同的初速度滑上同一粗糙水平面,若两物体的质量为mA>mB,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离sA与sB相比为( )A.sA=sB B.sA>sBC.sA查看更多
相关文章
- 当前文档收益归属上传用户