- 2021-04-17 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数学计划总结之《反比例》教学反思
数学计划总结之《反比例》教学反思 《反比例》是在学生学习了正比例的基础上学习的,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,沿用了前面判断正比例的方法,主要看所要判断的两个量的积是不是一个不变的量,或者采用举例子的方法。因此学生在整堂课的思维上与前面学习的正比例相比有明显的提高。在课堂实际操作中有以下几点心得和体会: 一、对教材内容安排的思考及处理针对教材呈现的目的,我先通过对两个表格的观察,引导学生发现他们共同的特点:一个数随另一个的变化而变化,并且是一个数增加,另一个减少。第一开始的环节就到这里点到为止。再让学生了解反比例的意义以及特点时,抓住正比例、反比例描述的是完全相反的两个数量关系这一特征,以概念的名称“正、反”两字为切人点,引导学生“顾名思义”对反比例的意义展开合理的猜想,并让学生探索那一种情况才是成反比例:A表中是和一定,B表中是积一定,对比上节课学习的正比例,比值一定,猜想B表的情况成为反比例更有说服力。最后在结合反比例的判断方法判断为什么A表表示得不是反比例的关系。这样学生在引入、学习、练习中不断深入去读懂这两个表,充分利用教材,感觉到“反比例”的特点及意义的学习更水到渠成了。 二、构建探究式学习方式苏霍姆林斯基说过:“在人的心灵深处,总有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。”在课堂教学中,我最大限度地给了学生自由活动的时间和空间,把学习的主动权交给学生。组织学生合作学习,讨论、分析,在小组研究过程中,学生们各抒己见,一边分析,一边判断,一边对比,学生自己弄清了成反比例的两种量之间的数量关系,初步认识了反比例的涵义,体验了探索新知、发现规律的乐趣。在这一环节中,学生分析、比较、综合、判断、推理等多种能力的培养和提高也就不言而喻了。 三、对比练习,通过比较,归纳规律通过练习题组,对比练习,针对问题重点、难点,进行思维冲击,层层拨开,利用概念准确的判断两种量是否成反比例,从而达到理解并运用的程度。例如:在课堂上讲解:长方形的面积一定,它的长和宽。想到平行四边形、三角形是否学生也能正确的解答,根据“底×高=平行四边形的面积”知道平行四边形的面积一定时,平行四边形的底和高成反比例比较容易迁移,但根据“底×高÷2=三角形的面积”知道三角形的面积一定时,三角形的底和高成不成反比例呢?怎样判断呢?学生紧扣前两者的判断方法,能够较清晰说出判断的过程呈现了这样两种方法情况:底×高÷2=面积→底×高=面积×2,面积一定→面积×2也一定,所以成反比例的关系。在练习中,有些学生也出现了一些疑问:(长+宽)× 2=长方形的周长,长与宽成反比例吗?这里长方形的周长是不变的,有些学生就误认为这里的积是一定的,应该是长和宽成反比例。学生出现这种认识的原因在于还不能很全面的根据抽象地计算方法来判断两个变化的量之间的关系,可以说被“×2”中的“×”影响,觉得积就是“×”,所以成反比例,而没有分清楚所描述的是谁与谁成反比例,只是单纯得依据“积一定”了,而没有深入去思考是“谁与谁的”积一定。因此,我引导学生再次审题,分清两个相关联的量具体指的是什么,使学生明确这里需要判断是的长和宽是否成反比例,再观察表格使学生认识到长和宽的积不是一定的,也就不成反比例。我又引导学生对计算方法进一步分析,后来学生发现:长与宽和的2倍是不变的,那么长与宽的和就是不变的,就是说这里长与宽的和不变,所以不成反比例就类似于A表的情况了,这样又充分利用了教材的资源。查看更多