数学计划总结之《平面直角坐标系》复习教学反思

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

数学计划总结之《平面直角坐标系》复习教学反思

数学计划总结之《平面直角坐标系》复习教学反思 ‎ ‎   期末复习课“平面直角坐标系复习”,安排了一课时复习。课前我们精心设计了教案学案,安排前置学习内容,学生课前进行了前置学习训练。‎ ‎  一、知识点归纳 ‎  上课开始,由学生进行了知识点的回忆:1.有序数对;2.平面直角坐标系;3.特殊位置的点的坐标特征;4.用坐标表示地理位置和用坐标表示平移;5.点到坐标轴的距离和坐标平面内几何图形的面积。老师在学生复习的基础上,提出:除了平面直角坐标系内有序数对的意义还有一些特定的含义,(如前置学习1如果用(7,2)表示七年级二班,那么八年级三班可表示成(  )     ,(9,4)表示的含义是(    )。坐标平面内有序数对与坐标平面内的点的一一对应,在研究问题时经常用到了数形结合的思想方法。‎ ‎  二、难点交流 ‎  结合前置学习的情况,给出足够的时间进行交流,提出:交流前置学习题的正确答案是什么;哪几道题的解题过程值得推荐;哪几道题是易错题及其解题注意点。明确了交流任务,学生交流讨论积极踊跃。学生的回答表现了学生知识理解和掌握的深刻。‎ ‎  在交流哪几道题的解题过程需要一起研究时,多数同学推荐第15题,题目是:“已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是___”,由学生介绍解题书写过程后,提出了OB等于a的绝对值,老师补充:已知点A(4,6),B(3,0),在x轴上求一点C,使△ABC的面积等于12.重点强调了求出BC=4后,由B(3,0)求出的C点有两种情况C(7,0)或(-1,0)。‎ ‎  学生畅谈在解题时的注意点,4、6、7、8题的距离问题,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值;4、8、10、15题两解问题,提醒我们思考要严谨;3、5、9题等题目的有序数对的有序问题;14题等题目的审题仔细的问题,点在平移时“左右减加横坐标,上下加减纵坐标”,补充:在△ABC中, A(2,-3)平移到A′(-1,2),求B(3,2)平移后的点B′的坐标,已知平移后的点C′(-4,6),求平移前的点C的坐标。从而关于点的坐标平移还要考虑平移前和平移后。‎ ‎  在协进学习的教学时,学生独立完成后,侧重讨论了1、2、4题所涉及的知识点和解题思路,学生从讨论后认识到,第1题用到了有理数的加法、乘法法则;第4题是“几个非负数的和为零,则每个加数都为零”的典型题。再由学生上黑板板演并讲解6、7、8三题。学生对6(1)(3)的两种情况有了更深刻的认识。‎ ‎  提升学习安排的面积问题,重在三角形面积的分割重组,学生提出了多种分割补形方法,通过学生的书写示范,规范了书写要求。‎ ‎  三、反思提高 ‎  安排教学活动要具体和可操作:学生交流一定要有事可做,在交流前置学习内容时,提出的“正确答案”、“解题过程”、“推荐易错”三个问题保证了学生交流的热烈和有效。‎ ‎  适当提升使学生复习课也有新收获:在学生推荐协进学习15题后,及时补充上面已知面积求C点坐标,学生进一步感受数形结合和方程思想;交流协进学习14题,增添求平移前和平移后的点的坐标,进一步体会注意平移的“左右”、“上下”和“前后”。‎ ‎  知识回顾让学生有成就感:协进学习第1、2、4、6、7、8等题目的解题思路和所涉及的知识的回顾,让学生可以以更高的视点分析题目,条件许可还可以由学生进行题目的变化和引申,增加学习数学的兴趣。‎
查看更多

相关文章

您可能关注的文档