- 2022-04-26 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
废水处理方法
废水处理方法作者:上海浸泰环保科技有限公司近年来,随着石油化工、塑料、合成纤维、焦化、印染等行业的迅速发展,各种含有大量难生物降解的有机污染物的废水相应增多,它们进入水体给环境造成了严重的污染。环保工作者在探寻高效、经济处理该类废水的研究方面进行了各种尝试,提出了许多处理方法。难降解有机物是指被微生物分解时速度很慢,分解不彻底的有机物(也包括某些有机物的代谢产物),这类污染物易在生物体内富集,也容易成为水体的潜在污染源。这类污染物包括多环芳烃、卤代烃、杂环类化合物、有机氛化物、有机磷农药、表面活性剂、有机染料等有毒难降解有机污染物。这些物质的共同特点是毒性大,成份复杂,化学耗氧量高,一般微生物对其几乎没有降解效果,如果这些物质不加治理地向环境排放,势必严重地污染环境和威胁人类的身体健康。随着工农业的迅速发展,人们合成了越来越多的有机物,其中难降解有机物占了很大比例,因此难降解有机物的治理研究已引起国内外有关专家的高度重视,是目前水污染防治研究的热点与难点。高浓度难降解有机废水的处理,是目前国内外污水处理界公认的难题。对于这类废水,目前国内外研究较多的有焦化废水、制药废水(包括中药废水)、石化/油类废水、纺织/印染废水、化工废水、油漆废水等行业性废水。难降解废水处理防范有以下几种:1各类微生物对难降解有机废水处理的应用;2电化学高级氧化技术处理难降解有机废水;3SBR处理工艺4膜生物反应器工艺;5混合处理技术方法工艺目前,国内外对难降解有机物废水的处理方法主要有生物法、物化法和氧化法等等。难降解废水处理方法:1、生物法生物法是目前应用最广泛的一种有机废水处理方法,主要包括活性污泥、生物膜法、好氧-厌氧法等。主要是利用微生物的新陈代谢,通过微生物的凝聚、吸附、氧化分解等作用来降解污水中的有机物,具有应用范围广、处理量大、成本低等优点。但当废水含有有毒物质或生物难降解的有机物时,生物法的处理效果欠佳,甚至不能处理。针对这类废水,人们对生物法作了一些改进,使其能应用于这类废水的处理。主要包括以下几方面。难降解废水处理方法:2、生物强化技术。生物强化技术是通过改善外界环境因素,提高现有工艺对有毒难降解有机物的生物降解效率。目前实施的生物强化技术主要有3个途径。n投加有效降解的微生物:主要是针对所要去除的污染物质,投加专门培养的优势菌种对其进行有效降解。该法已在美国、德国、日本等国采用,主要用于改善活性污泥法处理效果,但优势菌种在新环境中的适应性和再生问题待解决。为了增加优势菌种在生物处理装置内的浓度,提高难降解有机物的处理效率,固定化技术已被用来处理部分难降解有机物。固定化技术是通过化学或物理的手段将优势的游离菌固定,使其不再游离,但仍具有生物活性的技术。投加营养物和基质类似物:由于大部分有毒有机物的降解是通过共代谢途径进行的,在常规活性污泥系统中可降解目标污染物的微生物数量与活性比较低,添加某些营养物包括碳源与能源性物质,或提供目标污染物降解过程所需的因子,将有助于降解菌的生长,改善处理系统的运行性能。投加基质类似物是针对代谢酶的可诱导性而提出,利用目标污染物的降解产物、前体作为酶的诱导物,提高酶活性。投加遗传工程菌酶:通过基因工程技术构建具有特殊降解功能的菌,形成了酶生物处理技术。酶的固定化技术是目前这一领域研究的热点。难降解废水处理方法:3、优化组合的处理工艺。提高难降解物质的去除率,必须延长水力停留时间和增加泥龄,提高微生物有效浓度,增加污染物与微生物的接触时间。添加粉末活性炭活性污泥工艺:采用这一工艺,使有机物除被微生物氧化处理外,还被活性炭所吸附。由于活性炭表面的污泥泥龄较长,污染物与微生物接触时间远大于水力停留时间,从而使难降解毒性有机物去除率提高。厌氧-好氧工艺的组合:有时采用单独的好氧或厌氧工艺处理效果都不理想,但采用联合处理工艺后,可能会发挥各工艺的优点,产生协同效应,使处理效果大大提高。难降解废水处理方法:4、物化法物化法处理难降解有机污染物的文献报道不多见,主要有吸附法、萃取法、各种膜处理技术等。吸附法主要采用交换吸附、物理吸附或化学吸附等方式,将污染物从废水吸附到吸附剂上,达到去除的目的。吸附效果受到吸附剂结构、性质和污染物的结构和性质以及操作工艺等因素的影响,常用的吸附剂有活性炭、树脂、活性炭纤维、硅藻土等。该法的优点是设备投资少、处理效果好、占地面积小。但由于吸附剂的吸附容量有限,吸附后的再生往往能耗很大,废弃后排放易造成二次污染,这些因素限制了该方法的实际应用。萃取法是利用与水互不相溶、但对污染物的溶解能力较强的溶剂,将其与废水充分混合接触,大部分的污染物便转移至溶剂相,分离废水和溶剂,使废水得到净化。分离溶剂与污染物,溶剂可以循环利用,废物中有用物质的回收,还可变废为宝。但是目前萃取法仅适用于少数几种有机废水,萃取效果及费用主要取决于所使用的萃取剂。由于萃取剂在水中还有一定的溶解度,处理时难免有少量溶剂流失,使处理后的水质难以达到排放标准,还需结合其他方法做进一步的处理。随着材料技术的进步,超滤法和反渗透法等膜技术也已用于废水的治理研究,不但可以治理废水,还可从废水中回收有用物质。难降解废水处理方法:5、化学氧化法n化学氧化技术常用于生物处理的前处理,一般是在催化剂的作用下,用化学氧化剂处理有机废水以提高废水可生化性,或直接氧化降解废水中有机物使之稳定化。常用的氧化剂有O3,H2O2,KMnO4等。现代工业的发展使含有高浓度难生化降解有机物的工业废水日益增多,对于这类废水的处理,常用氧化剂表现出氧化能力不强,存在选择性氧化等缺点,难以达到实际的要求。随着研究的深入,高级化学氧化技术应运而生,在使用中已获得显著效果。高级氧化技术的基础在于运用光辐照、电、声、催化剂,有时还与氧化剂结合,在反应中产生活性极强的.OH自由基,再通过自由基与有机化合物之间的加合、取代、电子转移、断键等,使水体中的大分子,难降解有机物氧化降解成低毒或无毒的小分子物质,甚至直接降解成CO2和H2O,接近完全矿化。这种以.OH为主要氧化剂的降解技术克服了普通氧化法存在的问题,具有以下特点:产生的.OH氧化能力极强,与各种有机物质的反应速率相近,具有“广谱性”,能有效地将废水中的有机物彻底降解为CO2,H2O和无机盐,无二次污染,工艺灵活,既可单独处理,又可以与其他处理工艺组合。作为一种物理化学处理过程,极易控制以满足不同处理需要。由于氧化过程可以完全破坏毒性污染物,较之其他处理方法有特殊的优越性,因而,在水处理研究领域引起广泛的关注。H/O法生化处理工艺,污水处理工艺中生化处理法,是处理有机污水的主要方法。大多数有机废水中含有苯环类或长链脂肪酸类物质,它们较难被微生物直接代谢降解。根据废水的这一特性,采用(H/O)水解(酸化)好氧流体化床工艺做为主体处理工艺,确保出水达到各级要求的排放标准。水解工艺是一种新开发出来的工艺过程,它是指复杂的有机物分子,在水解酶参与下加以水分子分解为简单化合物的反应,酶的催化反应效率要比相应无酶反应高106-1013倍,反应是在缺氧条件下进行的。厌氧反应分为四个阶段:水解、酸化、酸性衰退和甲烷化。在水解阶段,固体物质溶解为溶解性物质,大分子物质降解为小分子物质,难生物降解物质转化为易生物降解物质。在酸化阶段,有机物降解为各种有机酸。水解和产酸进行得较快,难以把它们分开。起作用的主要微生物是水解菌和产酸菌。这里所说的水解工艺,就是利用厌氧工艺的前两段,即把反应控制在第二阶段,不进入第三阶段。在水解反应器中实际上完成水解和酸化两个过程。但为了简化称呼,简称为“水解”。水解工艺系统中的微生物主要是兼性微生物,它们在自然界中的数量较多,繁殖速度较快。而厌氧工艺系统中的产甲烷菌则是严格的专性厌氧菌,它们对于环境的变化。如pH值、碱度、重金属离子、洗涤剂、氨、硫化物和温度等的变化,比水解菌和产酸菌要敏感得多,并且生产缓慢(世代周期长)。n最重要的区别是水解工艺是在缺氧的条件下反应,而厌氧工艺则是在厌氧条件下反应。所谓厌氧(anaerobic)作用是指绝对的无氧(溶解氧DO=0),而缺氧(anexic)作用是指无氧或微氧(DO<0.3-0.5mg/l)。相对厌氧处理而言,水解反应的水力停留时间较短,反应一般在4-18小时完成。水解工艺运行稳定,受外界气温变化影响小,一般说水温在5-40℃之间,因为水解菌种由中温菌和低温菌两种菌种协同作用。水解池不产生如厌氧反应那样的臭味,且池子越深,效率越高,池深可达8.5-9m,可节省用地。水解菌种不同于厌氧工艺的甲烷菌,它是一种兼性菌种;而甲烷菌则是单一专性菌种,只要底物发生变化,甲烷菌就要衰亡。而水解工艺的水解菌种具有易繁殖性及强适应性,使水解工艺较厌氧工艺有突出的优点,能适应企业产品结构的变化。水解池的CODCr去除率一般为30-50%(某些工程可达60-80%);固体悬浮物的水解率为50-65%;水解--好氧工艺与全好氧工艺相比,能耗可节省40%左右;占地面积比厌氧工艺或纯好氧工艺节省20-30%;水解--好氧工艺(H/O)的CODCr总去除率可达95-98%;污水经水解预处理后,BOD5/CODCr的比值有明显升高,可生化性得到很大改善,为下一步的好氧处理奠定了良好基础。好氧生物处理就是在水体中有溶解氧存在的条件下,通过好氧微生物一系列生命活动,把水体中的有机物做为C源消耗掉,从而达到污水处理的目的。好氧微生物在合适的营养条件和生存环境下,生长代谢速度是很快的,处理装置启动的时间短但是效率高;而且对环境温度的敏感较厌氧处理低,对中低浓度的有机废水处理效果很好,可以很直接就达到排放的标准。查看更多