- 2022-04-22 发布 |
- 37.5 KB |
- 26页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社七章习题解答
《电磁场与电磁波》习题解答第七章正弦电磁波7.1求证在无界理想介质内沿任意方向en(en为单位矢量)传播的平面波可写成。解Em为常矢量。在直角坐标中故则而故可见,已知的满足波动方程故E表示沿en方向传播的平面波。7.2试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。解表征沿+z方向传播的椭圆极化波的电场可表示为式中取显然,E1和E2分别表示沿+z方向传播的左旋圆极化波和右旋圆极化波。7.3在自由空间中,已知电场,试求磁场强度。解以余弦为基准,重新写出已知的电场表示式这是一个沿+z方向传播的均匀平面波的电场,其初相角为。与之相伴的磁场为n7.4均匀平面波的磁场强度H的振幅为,以相位常数30rad/m在空气中沿方向传播。当t=0和z=0时,若H的取向为,试写出E和H的表示式,并求出波的频率和波长。解以余弦为基准,按题意先写出磁场表示式与之相伴的电场为由得波长和频率分别为则磁场和电场分别为7.5一个在空气中沿方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求和在时,的位置;(2)写出E的瞬时表示式。解(1)在t=3ms时,欲使Hz=0,则要求若取n=0,解得y=899992.m。考虑到波长,故因此,t=3ms时,Hz=0的位置为n(2)电场的瞬时表示式为7.6在自由空间中,某一电磁波的波长为0.2m。当该电磁波进入某理想介质后,波长变为0.09m。设,试求理想介质的相对介电常数以及在该介质中的波速。解在自由空间,波的相速,故波的频率为在理想介质中,波长,故波的相速为而故7.7海水的电导率,相对介电常数。求频率为10kHz、100kHz、1MHz、10MHz、100MHz、1GHz的电磁波在海水中的波长、衰减系数和波阻抗。解先判定海水在各频率下的属性可见,当时,满足,海水可视为良导体。此时f=10kHz时f=100kHz时nf=1MHz时f=10MHz时当f=100MHz以上时,不再满足,海水属一般有损耗媒质。此时,f=100MHz时f=1GHz时n7.8求证:电磁波在导电媒质内传播时场量的衰减约为55dB/λ。证明在一定频率范围内将该导电媒质视为良导体,此时故场量的衰减因子为即场量的振幅经过z=λ的距离后衰减到起始值的0.002。用分贝表示。7.9在自由空间中,一列平面波的相位常数,当该平面波进入到理想电介质后,其相位常数变为。设,求理想电介质的和波在电介质中的传播速度。解自由空间的相位常数,故在理想电介质中,相位常数,故电介质中的波速则为7.10在自由空间中,某均匀平面波的波长为12cm;当该平面波进入到某无损耗媒质时,波长变为8cm,且已知此时的,。求该均匀平面波的频率以及无损耗媒质的、。解自由空间中,波的相速,故波的频率为在无损耗媒质中,波的相速为故n(1)无损耗媒质中的波阻抗为(2)联解式(1)和式(2),得7.11一个频率为f=3GHz,ey方向极化的均匀平面波在,损耗正切的非磁性媒质中沿方向传播。求:(1)波的振幅衰减一半时,传播的距离;(2)媒质的本征阻抗,波的波长和相速;(3)设在x=0处的,写出H(x,t)的表示式。解(1)故而该媒质在f=3GHz时可视为弱导电媒质,故衰减常数为由得(2)对于弱导电媒质,本征阻抗为而相位常数故波长和相速分别为n(3)在x=0处,故则故7.12有一线极化的均匀平面波在海水()中沿+y方向传播,其磁场强度在y=0处为(1)求衰减常数、相位常数、本征阻抗、相速、波长及透入深度;(2)求出H的振幅为0.01A/m时的位置;(3)写出E(y,t)和H(y,t)的表示式。解(1)可见,在角频率时,海水为一般有损耗媒质,故n(2)由即得(3)其复数形式为故电场的复数表示式为则7.13在自由空间(z<0)内沿+z方向传播的均匀平面波,垂直入射到z=0处的导体平面上。导体的电导率,。自由空间E波的频率f=1.5MHz,振幅为1V/m;在分界面(z=0)处,E由下式给出n对于z>0的区域,求。解可见,在f=1.5MHz的频率该导体可视为良导体。故分界面上的透射系数为入射波电场的复数表示式可写为则z>0区域的透射波电场的复数形式为与之相伴的磁场为则7.14一圆极化波垂直入射到一介质板上,入射波电场为求反射波与透射波的电场,它们的极化情况又如何?解设媒质1为空气,其本征阻抗为;介质板的本征阻抗为。故分界面上的反射系数和透射系数分别为式中n都是实数,故也是实数。反射波的电场为可见,反射波的电场的两个分量的振幅仍相等,相位关系与入射波相比没有变化,故反射波仍然是圆极化波。但波的传播方向变为-z方向,故反射波也变为右旋圆极化波。而入射波是沿+z方向传播的左旋圆极化波。透射波的电场为式中,是媒质2中的相位常数。可见,透射波是沿+z方向传播的左旋圆极化波。7.15均匀平面波的电场振幅,从空气中垂直入射到无损耗的介质平面上(介质的),求反射波和透射波的电场振幅。解反射系数为透射系数为故反射波的电场振幅为透射波的电场振幅为7.16最简单的天线罩是单层介质板。若已知介质板的介电常数,问介质板的厚度应为多少方可使频率为3GHz的电磁波垂直入射到介质板面时没有反射。当频率分别为3.1GHz及2.9GHz时,反射增大多少?n题7.16图解天线罩示意图如题7.16图所示。介质板的本征阻抗为,其左、右两侧媒质的本征阻抗分别为和。设均匀平面波从左侧垂直入射到介质板,此问题就成了均匀平面波对多层媒质的垂直入射问题。设媒质1中的入射波电场只有x分量,则在题7.16图所示坐标下,入射波电场可表示为而媒质1中的反射波电场为与之相伴的磁场为故媒质1中的总电场和总磁场分别为(1)同样,可写出媒质2中的总电场和总磁场(2)媒质3中只有透射波(3)在式(1)、(2)、(3)中,通常已知入射波电场振幅,而、、和为待求量。利用两个分界面①和②上的四个边界条件方程即可确定它们。在分界面②处,即z=0处,应有。由式(2)和(3)得n(4)由式(4)可得出分界面②上的反射系数(5)在分界面①处,即z=-d处,应有,。由式(1)和(2)得(6)将分界面①上的总电场与总磁场之比定义为等效波阻抗(或称总场波阻抗),由式(1)得(7)将式(6)代入式(7)得(8)将式(5)代入式(8),并应用欧拉公式,得(9)再由式(7)得分界面①上的反射系数(10)显然,若分界面①上的等效波阻抗等于媒质1的本征阻抗,则,即分界面①上无反射。通常天线罩的内、外都是空气,即,由式(9)得欲使上式成立,必须。故频率f0=3GHz时则当频率偏移到f1=3.1GHz时,n故而故此时的等效波阻抗为反射系数为即频率偏移到3.1GHz时,反射将增大6%。同样的方法可计算出频率下偏到时,反射将增加约5%。[讨论](1)上述分析方法可推广到n层媒质的情况,通常是把坐标原点O选在最右侧的分界面上较为方便。(2)应用前面导出的等效波阻抗公式(9),可以得出一种很有用的特殊情况(注意:此时)。取,则有由式(9)得若取,则此时,分界面①上的反射系数为即电磁波从媒质1入射到分界面①时,不产生反射。可见,厚度的介质板,当其本征阻抗时,有消除反射的作用。7.17题7.17图所示隐身飞机的原理示意图。在表示机身的理想导体表面覆盖一层厚度的理想介质膜,又在介质膜上涂一层厚度为d2的良导体材料。试确定消除电磁波从良导体表面上反射的条件。解题7.17图中,区域(1)为空气,其波阻抗为区域(2)为良导体,其波阻抗为n区域(3)为理想介质,其波阻抗为区域(4)为理想导体,其波阻抗为利用题7.16导出的公式(9),分界面②上的等效波阻抗为应用相同的方法可导出分界面③上的等效波阻抗计算公式可得(1)式中的是良导体中波的传播常数,为双曲正切函数。将代入式(1),得(2)由于良导体涂层很薄,满足,故可取,则式(2)变为(3)分界面③上的反射系数为可见,欲使区域(1)中无反射,必须使故由式(3)得(4)将良导体中的传播常数和波阻抗代入式(4),得这样,只要取理想介质层的厚度,而良导体涂层的厚度,就可消除分界面③上的反射波。即雷达发射的电磁波从空气中投射到分界面③n时,不会产生回波,从而实现飞机隐身的目的。此结果可作如下的物理解释:由于电磁波在理想导体表面(即分界面①上产生全反射,则在离该表面处(即分界面②出现电场的波腹点。而该处放置了厚度为d2的良导体涂层,从而使电磁波大大损耗,故反射波就趋于零了。7.18均匀平面波从自由空间垂直入射到某介质平面时,在自由空间形成驻波。设驻波比为2.7,且介质平面上有驻波最小点;求介质的介电常数。解自由空间的总电场为式中是分界面上的反射系数。驻波比的定义为得据此求得因介质平面上是驻波最小点,故应取反射系数得则7.19如题7.19图所示,z>0区域的媒质介电常数为,在此媒质前置有厚度为d、介电常数为的介质板。对于一个从左面垂直入射过来的TEM波,试证明当且时,没有反射(为自由空间的波长)。n解媒质1中的波阻抗为(1)媒质2中的波阻抗为(2)当时,由式(1)和(2)得(3)而分界面O1处(即处)的等效波阻抗为当、即时(4)分界面O1处的反射系数为(5)将式(3)和(4)代入式(5),则得即时,分界面O1上无反射。的介质层称为匹配层。7.20垂直放置在球坐标原点的某电流元所产生的远区场为试求穿过r=1000m的半球壳的平均功率。n解将电场、磁场写成复数形式平均坡印廷矢量为故穿过r=1000m的半球壳的平均功率为式中dS为球坐标的面积元矢量,对积分有贡献是故7.21在自由空间中,。试求平面内的边长为30mm和15mm长方形面积的总功率。解将已知的电场写成复数形式得与相伴的磁场故平均坡印廷矢量为则穿过z=0平面上的长方形面积的总功率为7.22均匀平面波的电场强度为(1)运用麦克斯韦方程求出H:(2)若该波在z=0处迁到一理想导体平面,求出z<0区域内的E和H;(3)求理想导体上的电流密度。解(1)将已知的电场写成复数形式n由得写成瞬时值表示式(2)均匀平面波垂直入射到理想导体平面上会产生全反射,反射波的电场为即区域内的反射波电场为与之相伴的反射波磁场为至此,即可求出区域内的总电场E和总磁场H。故同样n故(3)理想导体平面上的电流密度为7.23在自由空间中,一均匀平面波垂直投射到半无限大无损耗介质平面上。已知在平面前的自由空间中,合成波的驻波比为3,无损耗介质内透射波的波长是自由空间波长的。试求介质的相对磁导率和相对介电常数。解在自由空间,入射波与反射波合成为驻波,驻波比为由此求出反射系数设在介质平面上得到驻波最小点,故取。而反射系数为式中的,则得求得得(1)又得(2)联解式(1)和(2)得n7.24均匀平面波的电场强度为,该波从空气垂直入射到有损耗媒质的分界面上(z=0),如题7.24图所示。(1)求反射波和透射波的电场和磁场的瞬时表示式;(2)求空气中及有损耗媒质中的时间平均坡印廷矢量。解(1)根据已知条件求得如下参数。在空气中(媒质1)在有损耗媒质中分界面上的反射系数为n透射系数为故反射波的电场和磁场的复数表示式为则其瞬时表示式为而媒质2中的透射波电场和磁场为故其瞬时表示式为(2)7.25一右旋圆极化波垂直入射到位于z=0的理想导体板上,其电场强度的复数表示式为(1)确定反射波的极化方式;(2)求导体板上的感应电流;(3)以余弦为基准,写出总电场强度的瞬时值表示式。解(1)设反射波的电场强度为n据理想导体的边界条件,在z=0时应有故得则可见,反射波是一个沿方向传播的左旋圆极化波。(2)入射波的磁场为反射波的磁场为故合成波的磁场为则导体板上的感应电流为(3)合成电场的复数表示式为故其瞬时表示式为7.26如题7.26图所示,有一正弦均匀平面波由空气斜入射到z=0的理想导体平面上,其电场强度的复数表示式为(1)求波的频率和波长;(2)以余弦函数为基准,写出入射波电场和磁场的瞬时表示式;(3)确定入射角;(4)求反射波电场和磁场的复数表示式;(5)求合成波电场和磁场的复数表示式。n解(1)由已知条件知入射波的波矢量为故波长为频率为(2)入射波传播方向的单位矢量为入射波的磁场复数表示式为则得其瞬时表示式而电场的瞬时表示式为(3)由,得n故(4)据斯耐尔反射定律知,反射波的波矢量为而垂直极化波对理想导体平面斜入射时,反射系数。故反射波的电场为与之相伴的磁场为(5)合成波的电场为合成波的磁场为7.27一个线极化平面波从自由空间入射到的电介质分界面上,如果入射波的电场矢量与入射面的夹角为45°。试求:(1)入射角为何值时,反射波只有垂直极化波;(2)此时反射波的平均功率流是入射波的百分之几?解(1)由已知条件知入射波中包括垂直极化分量和平行极化分量,且两分量的大小相等。当入射角等于布儒斯特角时,平行极化波将无反射,反射波中就只有垂直极化分量。(2)时,垂直极化分量的反射系数为n故反射波的平均功率流为而入射波的平均功率流为可见,7.28垂直极化波从水下的波源以入射角投射到水与空气的分界面上。水的,试求:(1)临界角;(2)反射系数;(3)透射系数;(4)波在空气中传播一个波长距离时的衰减量。解(1)临界角为(2)反射系数为(3)透射系数为(4)由于,故此时将产生全反射。由斯耐尔折射定律得n此时式中取“”,是考虑到避免时,场的振幅出现无穷大的情况。这是因为空气中的透射波电场的空间变化因子为由上式即得透射波传播一个波长时的衰减量为查看更多