计算机视觉new

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

计算机视觉new

计算机视觉*使计算机通过二维图像认知三维环境信息1>.感知三维环境中物体的几何信息:形状,位置,姿态,运动2>.描述,存储,识别,理解\nMarr的计算视觉理论三个阶段:三个层次:计算理论表达与算法硬件实现三个阶段:基元图2.5D3D\nMultiobjectTrackingasMaximumWeightIndependentSetThispaperaddressestheproblemofsimultaneoustrackingofmultipletargetsinavideo.Wefirstapplyobjectdetectorstoeveryvideoframe.Pairsofdetectionresponsesfromeverytwoconsecutiveframesarethenusedtobuildagraphoftracklets.Thegraphhelpstransitivelylinkthebestmatchingtrackletsthatdonotviolatehardandsoftcontextualconstraintsbetweentheresultingtracks.Weprovethatthisdataassociationproblemcanbeformulatedasfindingthemaximum-weightindependentset(MWIS)ofthegraph.Wepresentanew,polynomial-timeMWISalgorithm,andprovethatitconvergestoanoptimum.Similarityandcontextualconstraintsbetweenobjectdetections,usedfordataassociation,arelearnedonlinefromobjectappearanceandmotionproperties.Long-termocclusionsareaddressedbyiterativelyrepeatingMWIStohierarchicallymergesmallertracksintolongerones.Ourresultsdemonstrateadvantagesofsimultaneouslyaccountingforsoftandhardcontextualconstraintsinmultitargettracking.Weoutperformthestateoftheartonthebenchmarkdatasets.\nOverviewoftheApproachStep1:Weapplydetectorsofasetofobjectclassestoallvideoframes.Eachdetectionischaracterizedbyadescriptorthatrecordsthefollowingpropertiesofthecorrespondingboundingbox:location,size,andthehistogramsofcolor,intensitygradients,andopticalflow.\nStep2:Thebestmatchingdetectionsaretransitivelylinkedacrossvideointodistincttracks,whosetotalnumberisunknownapriori.Thisisdoneunderthehardconstraintthatnotwotracksmaysharethesamedetection,topreventimplausiblevideointerpretations.Inaddition,thelinkingisinformedbyspatiotemporalrelationshipsbetweenthetracks,whichprovideforsoftconstraints.Tothisend,webuildagraph,wherenodesrepresentcandidatematchesfromeverytwoconsecutiveframes,referredtoastracklets;nodeweightsencodethesimilarityofthecorrespondingmatches;andedgesconnectnodeswhosecorrespondingtrackletsviolatethehardconstraints.Giventhisattributedgraph,dataassociationisformulatedasthemaximum-weightindependentset(MWIS)problem.MWISistheheaviestsubsetofnon-adjacentnodesofanattributedgraph.Conveniently,MWISoftheentiregraphisequivalenttoaunionoftheMWISsolutionsofindependentsubgraphs.Thisallowsustoconductmultitargettrackingonline.WepresentanewMWISalgorithmthatisguaranteedtoconvergetoanoptimum.\nStep3:Intrinsictargetpropertiesandpairwisecontext,usedinStep2,arelearnedonline,asthetrackskeepaccumulatingstatisticalevidenceofthetargets.TherelativesignificanceofthesepropertiesforeachtrackislearnedsoastominimizetheMahalanobisdistancesofdetectionswithinthesametrack,andmaximizetheMahalanobisdistancesbetweendetectionsfromdistincttracks.Step4:Toaddresslong-termocclusions,weiterateStep2andStep3tomergeorsplittrackssoastoincreasethetotalweightoftheMWIS,untilconvergence.\nPCA主成分分析(PrincipalComponentAnalysis,PCA)是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。鲁棒性鲁棒性就是系统的健壮性。它是在异常和危险情况下系统生存的关键。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。\nHOG(梯度方向直方图检测器)HOGdescriptors是应用在计算机视觉和图像处理领域,用于目标检测的特征描述器。这项技术是用来计算局部图像梯度的方向信息的统计值。ImplicitShapeModel(ISM)(绝对形状模型)\n疑问:1.Occlusionn.闭塞?2.MaximumWeightIndependentSet?3.Hard&softconstraints(硬件&软件系统规定参数)?
查看更多

相关文章

您可能关注的文档