大学物理实验教案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

大学物理实验教案

大学物理实验教案作者姓名王悦学科(教研室)大学物理教研室所在院系电气工程系\n第一讲:误差与数据处理本节授课时数:2学时一、教学内容及要求1、测量与误差1.了解测量的含义,理解测量的分类和测量四要素并会判断;2.掌握误差的分类和误差的来源并会计算误差;3.熟练运用直接测量偶然误差的估计公式进行误差估计;4.了解系统误差的处理。2、不确定度的概念1.了解不确定度的分类;2.熟练掌握直接测量不确定度和间接测量的不确定度的计算。3、有效数字的处理要求熟练掌握各种运算中的有效数字位数的取舍原则。4、数据处理1.了解数据图表法的优点和缺点,会熟练作图和制表,给学生强调容易忽视的细节:比如图名,物理量的表示和单位以及描点的要求。2.熟练掌握用作图法求直线的斜率和截距的方法。理解如何把曲线改直。3.熟练使用逐差法,了解其使用的前提和优点。4.了解最小二乘法的由来和优点,能够熟练使用公式了解相关系数的意义。二、教学重点与难点重点:\n1.系统误差和偶然误差的特点;2.不确定度和置信概率的定义和其中的物理意义;3.不确定度的分类和具体计算,有效数字的运算法则;4.数据处理中的逐差法和最小二乘法。难点:不确定度的传递和有效数字的运算法则。三、教学后记通过绪论课,不少同学应该都建立这样的思想:实验不仅仅是动手的过程,而操作后的数据是一个比较复杂和相当重要的工作。对于现在和以后的实验,不确定度的分析是占有很重要的地位。实践部分:11个实验不同专业学生做的略有不同\n实验01:基本长度的测量本节授课时数:3学时一、教学内容及要求1.学习游标卡尺、螺旋测微器、读数显微镜的测量原理和使用方法。2.掌握误差及有效数字的概念;学习直接测量量的数据处理方法。二、教学设计1、游标卡尺构造及读数原理2、螺旋测微器(千分尺)3、读数显微镜1.首先检查螺旋测微计的零点读数,并记录下来。然后用螺旋测微器测量小钢珠直径,不同位置测量6-8次,计算体积和不确定度,并写出测量结果。2.用游标卡尺测量空心圆柱体不同部分的外径、内径、高度,各测量6-8次。计算空心圆柱体的体积及不确定度,并写出测量结果。3.首先将读数显微镜的叉丝调节清楚。将头发丝理直,放到读数显微镜的载物台上,使头发丝与镜筒平移方向垂直,再将发丝调节清楚。转动鼓轮,平移镜筒,测量发丝的直径,在三个不同的部位测量6次,取平均值。三、教学重点与难点1.掌握三种长度测量工具的正确读数方法2.误差分析方法四、教学后记学生在讲解后能比较顺利进行各种测量,但是往往忘记记录零点误差。\n实验02:静力称衡法测不规则固体的密度本节授课时数:3学时一、教学内容及要求1.学会物理天平的正确使用。2.掌握用流体静力秤法测定不规则固体的密度。二、教学设计静力称衡法测不规则固体的密度方法介绍:这一方法的基本原理是阿基来德原理。物体在液体中所受的浮力等于它所排开液体的重量。按密度定义:(1)在不考虑空气浮力的条件下,物体在空气中重为,它浸没在液体中的视重。那么,物体受到的浮力为:和是该物体在空气中及完全浸没液体称量时相应的重量。又物体所受浮力等于所排液体重量,即:式中是液体的密度,是排开液体的体积,亦为物体的体积。g为重力加速度。由式(1),(2),(3)可得待测固体的密度:用这种方法测密度,避开了不易测量的不规则体积,转换成只须测量较易测量的重量。一般实验时,液体常用水,为水的密度。\n实验步骤:1.按天平的调节要求,调好天平。(1)底板的水平调节。(2)横梁的水平调节。2.测量不规则金属物体的密度。(1)将细绳拴好金属块放在天平左盘上,称出此时质量。(2)把盛有大半杯水的烧杯放在天平左边的托架上,将拴好金属块的细绳挂在天平左盘的吊钩上,调整烧杯位置,使金属块浸没在水中,称出此时质量(不要让所称物体接触烧杯)。(3)按照(4)式计算出金属密度。三、教学重点与难点1.掌握什么是流体静力秤法2.熟悉物理天平的正确使用四、注意事项1.物理天平在使用中应注意:(1)启动、止动天平时动作要轻。(2)要“常止动”.即取放物体、加减砝码、拨动游码、调节平衡螺母前及使用完毕后,必须转动制动旋钮,止动天平,使横梁静放在制动架上,这样可避免刀口受冲击而损坏,还可防止刀口离开刀口垫使横梁掉下,只有在判断天平是否平衡时才启动天平。天平启动或止动时,旋转制动旋钮动作要轻。(3)加减砝码必须使用镊子,严禁用手,从秤盘中取下砝码后,应立即放入砝码盒,以免丢失或弄脏。(4)每台天平的左右秤盘、秤盘挂钩等部件,不能左右调换,更不能与其他天平上的部件互换。2.用流体静力称衡法测物体块密度时应注意:(1)在空气中称量物体块质量时,要使物体块保持洁净、干燥。(2)用细绳拴住物体块时,最好为活套,这样可方便调整物体块与重物的间距,以利于后面的称衡。\n实验03:速度与加速度的测量本节授课时数:2学时一、教学内容及要求1.学习使用气垫导轨的存储式数字毫秒计。2.观察匀速直线运动,测量滑块运动速度。3.观察匀加速运动,测量滑块的加速度。二、教学设计1.测量滑块运动的瞬时速度物体做直线运动时,其瞬时速度定义为:根据这个定义瞬时速度实际上是不可能测量的。因为当→0时,同时有→0,测量上有具体困难。我们只能取很小的及相应的,用其平均速度来代替瞬时速度,即:尽管这样用平均速度代替瞬时速度会产生一定的误差,但只要物体运动速度较大而加速度很小,这种误差不会太大。2.测量滑块运动的加速度a如图所示,如果将气垫导轨一段垫高,形成斜面,滑块下滑时将做匀变速直线运动,有三个基本运动公式:\n式中和以及和分别为和时刻滑块的位置坐标和相应的瞬时速度。在实验中使用的毫秒计只能从=0开始计时,所以运动方程变为:此时为滑块从处到处的运动时间,为两光电门之间的距离。而加速度的理论值为:这里为导轨的倾斜角,由图可得:实验时,使滑块由导轨的上端静止自由下滑,即可测得不同位置处各自的相应的速度与加速度值。三、教学重点与难点1.掌握如何通过控制光电门位置测量加速度和速度2.熟悉气垫导轨的结构和正确使用方法四、注意事项1.气垫导轨是较精密的设备,严禁碰撞、磨损导轨表面,没通气的情况下,不能在导轨上推动滑块。2.实验时,要特别注意,不要使滑块、遮光片碰坏光电门,应先用手试推滑块,看是否与光电门相撞,调好后方进行试验。3.滑块的内表面光洁度高,应严防划伤碰坏,滑块运动速度不应太大,以免与气垫导轨两端碰撞而跌落使之受损。装取遮光片或砝码,应将滑块从气垫导轨上取下操作,待固定好再把滑块放到导轨上。4.实验前应仔细检查导轨表面上每一个小孔是否畅通无阻,如果发现堵塞,应先用细针仔细清通。5.试验中不需要通气时应关闭气源,以免使用时间过长而烧坏电机。若送气时听见气源电机有异常声响,应立即关闭气源。\n实验04:扭摆法测定物体转动惯量本节授课时数:3学时一、教学内容及要求1.会用扭摆法测定几种不同形状物体的转动惯量的方法,并与理论值比较。2.测定刚体转动惯量与质量分布的关系,验证刚体转动惯量的平行轴定理。二、教学设计转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量,与转动惯量的关系,进行转换测量。本实验使物体作扭转摆动,由于摆动周期及其它参数的测定计算出物体的转动惯量。扭摆的构造如图所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。在轴的上方可以装上各种待测物体。垂直轴与支座间装有轴承,以降低摩擦力矩,3为水平仪,用来调整系统平衡。将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。根据胡克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即:(1)1-垂直轴,2-蜗簧,3-水平仪式中,k为弹簧的扭转常数。根据转动定律式中,J为物体绕转轴的转动惯量,为角加速度,由上式得(2)令,且忽略轴承的摩擦阻力矩,由式(1)、(2)得:上述方程表示扭摆运动具有角简谐振动的特性,角加速与角位移成正比,且方向相反,此方程的解为:\n式中,A为谐振动的角振幅,φ为初相位角,ω为角速度。此谐振动的周期为:(3)由(3)式可知(4)只要实验测得物体扭摆的摆动周期,并在J和k中任何一个量已知时即可计算出另一个量。本实验利用公式法先测得圆柱体的转动惯量,再用扭摆测出载物盘的摆动周期T0,再把圆柱体放到载物盘上,测出此时的摆动周期T1,分别代入(4)式,整理得:(5)其中J0为圆柱体的转动惯量。三、教学重点与难点1.掌握规则物体转动惯量的测量方法2.熟悉扭摆的构造、使用方法,以及转动惯量测试仪的使用方法四、注意事项1.弹簧的扭转常数k值不是固定常数,它与摆动角度略有关系,摆角90°左右基本相同,在小角度时变小。为了降低实验时由于摆动角度变化过大带来的系统误差,在测定各种物体的摆动周期时,摆角不宜过小,摆幅也不宜变化过大;2.光电探头应酬放置在挡光杆平衡位置处,挡光杆不能和它相接触,以免增大摩擦力矩;3.机座应保持水平状态;4.在安装待测物体时,其支架必须全部套入扭摆主轴,并将止动螺丝旋紧,否则扭摆不能正常工作;5.在称金属细杆与木球的质量时,必须将支架取下否则会带来极大误差。\n实验05:空气比热容比的测定本节授课时数:2学时一、教学内容及要求1.学习一种测量空气比热容比的方法。2.通过对空气比热容比的测定,加深对热力学过程中状态变化的理解。二、教学设计一般地说,同种物质可以有不同的比热容,不仅物质的比热容与其温度有强烈的依赖关系,而且还取决于外界对物质本身所施加的约束。当压力恒定时可得物质的定压比热容Cp,体积一定时可得物 质的定容比热容Cv。二者都是热力学过程中的重要参量,因此又称它们为主比热容。Cp及Cv一般是温度的函数,但当实际过程所涉及的温度范围不大时,二者均近似地视为常数。对于理想气体,二者之间满足如下关系:Cp-Cv=R。由上式立即可以得出一个热力学中的重要物理量比热容比:rr=Cp/Cv对于上图满足泊松公式:(1)而状态III与状态I是等温的,所以,玻意耳定律成立,即:(2)由(1)及(2)式消去V1、V2可解得:\n(3)可见,只要测得测量,,的值可测量出空气的比热容如果用⊿,⊿分别表示,与大气压强的差值时,则有:=+⊿;=+⊿(4)将(4)式代入(3)式,并考虑到〉〉⊿,〉〉⊿,则:及所以:(5)同样,只要用压力计测得实验过程中,时与的压力差⊿,⊿,即可通过(5)式求出比热容比。三、教学重点与难点1.比热容比物理意义2.熟悉用绝热膨胀法测定空气的比热容比的方法四、注意事项1.向容器内压入空气时,压强差值不超过15kpa;2.实验过程中打开出气阀放气时,当听到放气声将结束时应迅速关闭出气阀,提早或推迟关闭出气阀,都将影响实验要求,引入误差。3.由于数字电压表有滞后显示,如用计算机实时测量,发现此放气时间约零点几秒,并与放气声产生消失一致,而且关闭也需要零点几秒的时间,所以关闭出气阀用听声更可靠些;4.实验要求环境温度基本不变、如发生环境温度不断下降情况,可在远离实验仪适当加温,以保证实验正常进行。\n实验06:热电偶的温差特性研究本节授课时数:3学时一、教学内容及要求1.了解电位差计的工作原理及使用方法2.了解热电偶的工作原理3.用电位差计测量铜—康铜的热电偶温差系数二、教学设计1、热电偶的温差电动势1821年德国物理学家塞贝克(TJSeeback)发现:当两种不同金属导线组成闭合回路时,若在两接头维持一温差,回路就有电流和电动势产生,后来称此为塞贝克效应。其中产生的电动势称为温差电动势,上述回路称为热电偶。温差电热电偶的温差电动势动势的大小除了和组成的热电偶材料有关外,还决定于两接点的的温度差。如上图所示,将一端的温度T0固定(称为冷端,实验中为室温),另一端的温度T改变(称为热端),温差电动势亦随之改变。电动势和温差的关系较复杂,其第一级近似式为:ε=α(T–T0)式中α称为热电偶的温差系数,其大小取决于组成热电偶的材料。\n2、电位差计工作原理电位差计是利用电压补偿原理而设计的电压测量工具。通常使用电压表测量电源电动势,其实测量结果是端电压,不是电动势。怎样才能使电源内部没有电流通过而又能测定电源的电动势呢?在下图所示电位差计的补偿原理的电路中,Ex是待测电源,E0是电动势可调的电源,Ex与E0通过检流计并联在一起。当调节E0的大小至检流计指针不偏转,即电路中没有电流时,两个电源在回路中互为补偿,它们的电动势大小相等,方向相反,即Ex=-E0,电路达到平衡。若已知平衡状态下E0的大小,就可以确定Ex的值。这种测定电源电动势的方法,叫做补偿法。三、教学重点与难点1.了解电位差计的工作原理及使用方法2.了解热电偶的工作原理3.用电位差计测量铜—康铜的热电偶温差系数4.读懂如何运用补偿法的电路图。四、注意事项1.所有的接线必须接好不能出现虚接,标准电池和电势差计的工作电源以及温差电动势的正负极不能接反。2.每测一组数据后,都应再次校准电势差计,实验时应注意提醒和检查。3.热电偶与毫伏表相连接的两端上的绝缘漆一定要用砂布打磨干净,且两端要与毫伏表接触良好。4.测量结束后,倍率开关应处在断开位置,避免不必要的电能消耗。实验07:电表的改装及校准实验\n本节授课时数:2学时一、教学内容及要求1.掌握将电流计改装成各种量程的电流表、电压表的原理和方法。2.学会用比较法校准电表。3.了解欧姆表的测量原理和定标方法。二、教学设计1.电流计可以改装成毫安表或电流表电流计G只能测量很小的电流,为了旷达电流计的量程,可以选择一个合适的分流电阻与电流计并联,允许比电流计量程大的电流通过由电流计和与电流计并联的分流电阻所组成的毫安表或电流表,这就改装成为一只毫安表或电流表,这时电表面板上指针的指示值就要按好哪表火电流表的满量程设计来读取数据。若测出电流计G的内阻,则根据上图就可以算出将此电流计改装成量程为I的毫安表所需的分流电阻由于电流计与并联,则设为临界状态时,则有:由上式可见,电流量程I扩展越大,分流电阻阻值越小。取不同的值,可以制成多量程的电流表。2.电流计也可以改装成电压表,由于电流计量程很小,其内阻\n也较小,所以只允许加很小的电位差,为了扩大其测量点位差的量程,可以让其与一个高电阻串联,这时两端的电位差大部分分配在上,而家在电流计上的小部分电压只与所加电位差U成正比。只需选择合适的与电流计串联作为分压电阻,允许比原来大的电压加到由电流计和与电流计串联的分压电阻所组成的电压表上,这就改装成为一只电压表,这时电流计面板上指针的指示值就要按电压表的满量程设计来读取读数。如果改装后的电压表量程为V,则根据上图就可以算出将此电流计改装成量程为V的电压表所需的分压电阻。当处于临界条件时:由上式可见,电压表量程V扩展越大,分压电阻阻值越大。取不同的值,可以制成多量程的电压表。三、教学重点与难点1.了解替代法测量电流计内阻的方法。2.掌握将电流计改装成电压表和电流表的基本原理和方法。3.学习绘制校准曲线。四、教学后记部分学生的绘制的曲线不合理,部分同学在报告中没有给出实验结论实验08:电阻元件的伏安特性\n本节授课时数:2学时一、教学内容及要求1.学会识别常用电路元件的方法。2.掌握线性电阻,非线性电阻元件伏安特性的逐点测试法。3.掌握实验装置上直流电工仪表的设备的使用方法。二、教学设计电阻是导体材料的重要特性,在电学实验中经常要对电阻进行测量。测量电阻的方法有多种,伏安法是常用的基本方法之一。所谓伏安法,就是运用欧姆定律,测出电阻两端的电压和其上通过的电流,根据:即可求得阻值R。也可运用作图法,作出伏安特性曲线,从曲线上求得电阻的阻值。对有些电阻,其伏安特性曲线为直线,成为线性电阻,如常用的碳膜电阻、线绕电阻、金属膜电阻等。另外,有些元件,伏安特性曲线为曲线,称为非线性电阻元件,如灯泡、晶体二极管、稳压管、热敏电阻等。非线性电阻元件的阻值是不确定的,只有通过作图法才能反映它的特性。用伏安法测电阻,原理简单,测量方便,但由于电表内阻介入的影响,给测量带来一定系统误差。在电流表内接法中,由于电压表测出的电压值U包括了电流表两端的电压,因此,测量值要大于被测电阻的实际值。由可见,由于电流表内阻不可忽略,故产生一定的误差。\n在电流表外接法中,由于电流表测出的电流I包括的流过电压表的电流,因此,测量值要小于实际值。由:可见,由于电压表内阻不是无穷大,故给测量带来一定的误差。上述两种联结电路的方法,都给测量带来一定的系统误差,即测量方法误差。为此,必须对测量结果进行修正。其修正值为:其中R为测量值,为实际值。为了减小上述误差,必须根据待测阻值的大小和电表内阻的不同,正确选择测量电路。当且时,选择电流表内接法。且时,选择电流表外接法。且时,两种接法均可。经过以上处理,可以减小和消除由于电表接入带来的系统误差,但电表本身的仪器误差,但电表本身的仪器误差仍然存在,它决定于电表的准确度等级和量程,其相对误差为式中和为电流表和电压表允许的最大示值误差。1.普通金属膜电阻的V-A特性普通金属膜电阻的阻值是不变的,所以它的V-A特性曲线如图所示:\n2.小灯泡的电阻的V-A特性小灯泡中的钨丝开始处于常温状态。它的阻值保持不变状态,但随着电流通过,其温度增高,阻值变大,它的V-A特性曲线如图:3.普通二极管的V-A特性普通二极管的特性是正向导通反向截止,它的V-A特性曲线如图:4.稳压二极管的V-A特性稳压管实质上就是一个面结型硅二极管,它具有陡峭的反向击穿特性,工作在反向击穿状态。在制造稳压管的工艺上,使它具有低压击穿特性。稳压管电路中,串入限流电阻,使稳压管击穿后,电流不超过允许的数值,因此击穿状态可以长期持续,并能很好地重复工作而不至于损坏。稳压管的特性曲线如上图所示,它的正向特性和一般硅二极管一样,但反向击穿特性较陡。由图可见,当反向电压增加到击穿电压以后,稳压管进入击穿状态在曲线的AB段,虽然反向电流在很大范围内变化,但它两端的电压变化很小,即基本恒定。利用稳压管的这一特性,可以达到稳压目的。稳压管的参数如下:a.稳定电压。即稳压管在反向击穿后其两端的实际工作电压。这一参数随工作电流和温度的不同略有改变,并且分散性较大,例如2CW14型的=6~7.5V。但对于每一个管子而言,对应于某一工作电流,稳定电压有相应的确定值。b.稳定电流。即稳压管的电压等于稳定电压时的工作电流c.动态电阻。是稳压管电压变化和相应的电流变化之比,即\n,显然,越小,稳压效果越好,动态电阻的数值随工作电流的增加而减小。但当工作电流以后,减小的不显著,而当时,明显增加,阻值较大。d.最大稳定电流和最小稳定电流。是指稳压管的最大工作电流,超过此值,即超过了管子的允许功耗散功率;是指稳压管的最小工作电流,低于此值,不再稳定,常取。三、教学重点与难点1.学习常用的电磁学仪器仪表的正确使用及简单电路的联结;2.掌握用伏安法测量电阻的基本方法及其误差的分析;3.测定线性电阻和非线性电阻的伏安特性;四、注意事项1.使用电源时要防止短路,接通和断开电路前应使输出为零,然后再慢慢微调。2.测定金属膜电阻的伏安特性时,所加电压不得使电阻超过额定输出功率。3.测定稳压管伏安特性曲线时,不应超过其最大稳定电流实验09:模拟示波器的使用\n本节授课时数:3学时一、教学内容及要求1.了解示波器的结构和示波器的示波原理;2.掌握示波器的使用方法,学会用示波器观察各种信号的波形;3.学会用示波器测量直流、正弦交流信号电压;4.观察利萨如图,学会测量正弦信号频率的方法。二、教学设计示波管的结构和特点示波管一般可分为电子枪、偏转板和荧光屏三部分(见图)。电子枪由加热电极F、阴极K、栅极G、加速电极FA、第一阳极A1(又称聚焦电极)和第二阳极A2组成。偏转板有水平偏转板和垂直偏转板两对。荧光屏是由在示波管玻璃屏内表面涂敷荧光物质膜构成。要学生了解电子射线的电聚焦原理和掌握电子束的电偏转与电偏灵敏度示波管的组成示波器扫描同步系统:功能是获得锯齿波电压信号,并用Y通道输入信号或外部专用信号去控制锯齿波信号的周期,使其为Y通道输入信号周期的整数倍.如果将锯齿波电压加到X偏转板上,可以使光点匀速的沿X方向从左端向右端做周期性运动,这个过程成为扫描.如果它的频率足够高且Y轴无信号时,再荧光屏上将出现一条水平的亮线----时间基线.同步----信号完整稳定的波形---锯齿波周期大于或等于输入信号周期,\n锯齿波每个相同位相点与输入信号的相同位相点之间的对应关系步随时间变化.即:锯齿波的周期是信号电压周期的整数倍,且两者保持一定的相位关系.在X/Y板上都加正弦电压信号,当频率之比位整数倍的时候,位稳定封闭的图形,称李莎如图形三、教学重点与难点1.掌握电子枪的工作原理,能够写出模拟示波器实验过程的详细连接方法2.熟悉示波器面板上的各个旋钮的功能和作用。3.掌握示波器的使用方法,学会用示波器观察各种信号的波形。4.观察利萨如图。四、注意事项1.在本实验中切勿接错导联线!注意采取安全的措施,严防触电。2.在实验过程中将“辉度”调节适宜,绝不能过强,以免严重损坏荧光屏上的发光物质,从而延长示波管的寿命。五、教学后记学生在讲解后能比较顺利使用示波器的各个按钮,对于调节标准方波有的同学还有点迷惑,有时会忘记探笔上也有倍率选择。另外如果学生不是直接把放大后的电压反向加到X/Y上,而是改变信号,把正玄波加到Y上,把锯齿电压加到Y上,虽然可以得到图形,但是振幅非常小,因为X的放大倍数小(电压放大器)实验10:霍尔效应及其应用\n本节授课时数:3学时一、教学内容及要求1.了解霍尔效应原理以及有关霍尔器件对材料要求的认识。2.学习用“对称测量法”消除副效应的影响,测量试样的-和-曲线。3.确定试样的导电类型、载流子浓度。测量霍尔元件的电导率、载流子迁移率。4.绘制IS—V0曲线。二、教学设计1.什么是霍耳效应?什么是霍耳系数?什么是霍耳元件的灵敏度?2.霍耳效应通过哪些物理量的测量来对磁场进行测量?3.霍耳效应测量磁场装置怎样使用?应当注意些什么?4.本实验可采取什么方法消除副效应的影响?背景知识介绍:1879年,24岁的美国物理学家霍耳(E.H.Hall)在研究载流导体在磁场中所受力的性质时,发现了一种电磁效应,即如果在电流的垂直方向加上磁场,则在与电流和磁场都垂直的方向上将建立一个电场。这一效应称为霍耳效应。由于这种效应对一般材料而言很不明显,因而长期未得到实际应用。(金属和电解质的霍尔系数很小,霍尔效应不显著;半导体的霍尔系数则大得多,霍尔效应显著.)20世纪50年代以来,随着半导体工艺和材料的发展,先后制成了有显著霍耳效应的材料,如N型锗、锑化铟、磷砷化铟等,对这一效应实际应用的研究随之增加,其中比较突出的是用它来测量磁场。霍耳元件是一种利用霍耳效应通过把磁信号形式转变为电信号形式以实现信号检测的半导体器件。具有响应快、工作频率高、功耗低等特点。半导体霍耳元件在磁测量中应用广泛,用霍耳元件作探头制成的磁场测量仪器,其测量范围宽、精度高,且频率响应宽。既可测大范围的均匀场,也可测不均匀场或某点的磁场。现在通用的特斯拉计(高斯计),其探头就是霍耳元件。\n通过研究霍耳效应还可测得霍耳系数,由此能判断材料的导电类型、载流子浓度及载流子迁移率等重要参数,因此霍耳效应也是研究半导体材料的一个重要实验。简单讲解霍耳效应原理(一)霍耳效应现象将一块半导体(或金属)薄片放在磁感应强度为B的磁场中,并让薄片平面与磁场方向(如Y方向)垂直。如在薄片的横向(X方向)加一电流强度为的电流,那么在与磁场方向和电流方向垂直的Z方向将产生一电动势。这种现象称为霍耳效应,称为霍耳电压。霍耳发现,霍耳电压与电流强度和磁感应强度B成正比,与磁场方向薄片的厚度d反比,即(1)式中,比例系数R称为霍耳系数,对同一材料R为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d也是一常数,故常用另一常数K来表示,有(2)式中,K称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍耳元件的灵敏度K知道(一般由实验室给出),再测出电流和霍耳电压,就可根据式(3)算出磁感应强度B。图1霍耳效应示意图图2霍耳效应解释(二)霍耳效应的解释\n现研究一个长度为l、宽度为b、厚度为d的N型半导体制成的霍耳元件。当沿X方向通以电流后,载流子(对N型半导体是电子)e将以平均速度v沿与电流方向相反的方向运动,在磁感应强度为B的磁场中,电子将受到洛仑兹力的作用,其大小为方向沿Z方向。在的作用下,电荷将在元件沿Z方向的两端面堆积形成电场,它会对载流子产生一静电力,其大小为方向与洛仑兹力相反,即它是阻止电荷继续堆积的。当和达到静态平衡后,有,即,于是电荷堆积的两端面(Z方向)的电势差为(4)通过的电流可表示为式中n是电子浓度,得(5)将式代人式(3-18-4)可得可改写为该式与1一致,就是霍耳系数。(三)霍耳元件副效应的影响及其消除1.霍耳元件的副效应在研究固体导电过程中,继霍耳效应之后不久又发现了厄廷豪森(Etinghausen)、能斯特(Nernst)和里纪—勒杜克(Righi-Ledue)\n效应,它们都归属于热磁效应。(1)厄廷豪森效应1887年厄廷豪森发现,由于载流子的速度不相等,它们在磁场的作用下,速度大的受到洛仑兹力大,绕大圆轨道运动;速度小的则绕小圆轨道运动,这样导致霍耳元件的一端较另一端具有较多的能量而形成一个横向的温度梯度。因而产生温差电效应,形成电势差,记为。其方向决定于和磁场B的方向,并可判断与始终同向(2)能斯特效应由于输入电流端引线的焊接点a、b处的电阻不相等,通电后发热程度不同,使a和b两端之间存在温度差,于是在a和b之间出现热扩散电流。在磁场的作用下,在c、e两端出现了横向电场,由此产生附加电势差,记为。其方向与无关,只随磁场方向而变。(3)里纪—勒杜克效应由于热扩散电流的载流子的迁移率不同,类似于厄廷豪森效应中载流子速度不同一样,也将形成一个横向的温度梯度,以产生附加电势差,记为。其方向只与磁场方向有关,且与同向。2.不等势电势差不等势电势差是由于霍耳元件的材料本身不均匀,以及电压输入端引线在制作时不可能绝对对称地焊接在霍耳片的两侧所引起的,如图所示。因此,当电流流过霍耳元件时,在电极3、4之间也具有电势差,记为,其方向只随方向不同而改变,与磁场方向无关。3.副效应的消除根据以上副效应产生的机理和特点,除外,其余的都可利用异号法消除其影响,因\n图3能斯特效应图4不等势电势差而需要分别改变和B的方向,测量四组不同的电势差,然后作适当的数据处理,而得到。取、测得取、测得取、测得取、测得消去、和得因,一般可忽略不计,所以(6)本实验要利用霍尔效应测量长直螺线管轴线上的磁感应强度。三、教学重点与难点1.了解霍耳效应的机理和霍耳元件的性能。\n2.学习用霍耳元件测量磁场的实验方法。3.学习一种消除系统误差的方法(异号法)。4.利用公式计算霍耳电压时,注意U1、U2、U3、U4的符号。最简单的办法是U1、U2、U3、U4各自减去零差后取绝对值,然后除于4。四、注意事项1.霍耳元件质脆、引线易断,实验时要注意不要碰触或振动霍耳探头(霍耳元件)。2.霍耳元件的工作电流有一额定值,超过额定值后会因发热而烧毁,实验时要注意实验室给出的额定值,一定不要超过。3.螺线管励磁电流额定值为1A,为避免过热和节约用电,在不测量时应立即断开电源。五、教学后记1.学生在作图时对作图法的要素掌握还是不够。2.处理数据个别同学没有掌握方向性,出现很大的错误,作图后成折线\n实验11:铁磁材料的磁滞回线和μ-H曲线本节授课时数:2学时一、教学内容及要求1.认识铁磁物质的磁化规律并观察样品的磁滞回线2.测绘样品的μ-H曲线3.测定样品的Br、Hc两参数二、教学设计铁磁物质特征是在外磁场作用下能被强烈磁化,故磁导率μ很高,另一显著特征是磁滞现象,即外磁场停止作用后,铁磁质仍能保留磁化状态,下图为铁磁质的磁感应强度B与磁化强度H的关系曲线。当磁场H从零开始增加时,磁感应强度先随之缓慢上升,继而迅速增长,当H增至Hs时B达饱和值Bs,其中OS段称为起始磁化曲线。实验表明,铁磁质的磁化曲线都是不可逆的。即达到饱和后,如果逐渐减小电流I,B并不沿起始磁化曲线逆向地随H的减小而减小,而是减小得比原来增加时慢,而且当I=0,从而H=0时,B并不为零,而铁磁质的起始磁化曲线和磁滞回线是保持一定的值Br,如上图SC′段所示。这种现象叫做磁滞效应。即当H恢复到零时,铁磁质中保留的磁感应强度Br叫做剩磁。这时撤去线圈,铁磁质就是一块永磁体。要完全消除剩磁Br,必须让电流I反向,只有当反向电流增大到一定值从而使反向的磁场强度增大到一定值时,铁磁质才完全退磁,即B=0,使铁磁质完全退磁所需的反向磁场强度的大小叫做铁磁质的矫顽力,用Hc\n表示。铁磁质的矫顽力越大,退磁所需的反向磁场也越大。继续增大反向电流以增大反向的H,可以使铁磁质达到反向饱和状态,再将反向电流逐渐减小到零,铁磁质又会达到反向剩磁状态,相应的磁感应强度为–Br,最后将电流又改回原来的方向并逐渐增大,铁磁质又会经–Hc表示的状态回到原来的饱和状态,这样,磁化曲线便形成一闭合的B-H曲线,叫做磁滞回线。铁磁质的磁导率因B与H的非线形,故铁磁材料的μ不是常数而是随H而变化,可高达数千乃至数万,这一特点正是它用途广泛的原因之一。下图为铁磁材料的μ与H的关系曲线。铁磁材料的μ与H的关系曲线可以说磁化曲线和磁滞回线是铁磁材料的分类和选用的主要依据,下面为两种典型的磁滞回线,其中软磁材料的矫顽力、剩磁均较小,是制造变压器、电机和交流磁铁的主要材料,而硬磁材料的矫顽力大,剩磁强,可用来制造永磁体。左:软磁材料的磁滞回线右:硬磁材料的磁滞回线本实验待测样品为矽钢片,N为励磁绕组,L为样品的平均磁路,R1为励磁电流取样电阻,根据安培环路定律,样品的磁化强度式中N、L、R1均为已知常数,所以由U1\n可确定H。而样品的磁感应强度B是测量绕组n和R2C2电路给定的,S为样品的截面积,根据法拉第电磁感应定律,有同样C2、R2、n和s均为已知常数,所以由U2可确定B。综上所述,将U1和U2分别加到示波器的“X输入”和“Y输入”便可观察样品的B—H曲线;如将U1和U2分别加到测试仪的信号输入端可测定样品的饱和磁感应强度Bs、剩磁Br、矫顽力Hc等参数。三、教学重点与难点1.认识铁磁物质的磁化规律,观察样品的磁滞回线。2.测绘样品的μ–H曲线。3.测定样品的Br、Hr参数。四、注意事项1、调好磁滞回线大小位置后,必须进行退磁。2、测量过程中,不能再调节示波器的X、Y轴的增益。
查看更多

相关文章

您可能关注的文档