大学物理复习答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

大学物理复习答案

3.半径为和的两个同轴金属圆筒,其间充满着相对介电常数为的均匀介质。设两圆筒上单位长度带电量分别为和,则介质中的电位移矢量的大小,电场强度的大小。答案:,解:如图,取柱面高斯面。根据对称性,柱面(高斯面)的上下底上,电位移矢量与高斯面法线方向垂直;柱面(高斯面)的侧面上,电位移矢量处处大小相等,并与高斯面法线方向平行。由高斯定理,得到,,电场强度为4.一带电量、半径为的金属球壳,壳内充满介电常数为的各向同性均匀电介质,壳外是真空,则此球壳的电势。答案:解:由高斯定理,可以求得球壳外电场强度取无限远处电势为零,则5.两个点电荷在真空中相距为时的相互作用力等于在某一“无限大”均匀电介质中相距为时的相互作用力,则该电介质的相对介电常数。答案:解:在真空中,两个点电荷之间的作用力(库仑力)为点电荷在“无限大”电介质中产生的电场强度为点电荷受到的库仑力为依题6.有一同轴电缆,内、外导体用介电系数分别为和的两层电介质隔开。垂直于轴线的某一截面如图5-2所示。求电缆单位长度的电容。解:取高斯面为柱面。柱面的半径为、长度为\n,对称轴为同轴电缆的对称轴,柱面在同轴电缆的两极之间。由对称性,高斯面上的上下底面电位移矢量与高斯面法线方向垂直;侧面上,电位移矢量处处大小相等,并且与高斯面平行。由高斯定理,有,,则同轴电缆的两极之间的电场强度为,;,同轴电缆的两极之间的电势差为单位长度的高斯面包围的自由电荷量为则单位长度的同轴电缆的电容为:7.在一平行板电容器的两极板上,带有等值异号电荷,两极间的距离为,充以的介质,介质中的电场强度为。求:介质中的电位移矢量;平板上的自由电荷面密度;介质中的极化强度;介质面上的极化电荷面密度;平板上自由电荷所产生的电场强度,介质面上极化电荷所产生的电场强度。解:(1)(2)(3)(4)(5),或8.一导体球,带电量,半径为,球外有两种均匀电介质。第一种介质介电常数为、厚度为,第二种介质为空气充满其余整个空间。求球内、球外第一种介质中、第二种介质中的电场场强、电位移矢量和电势。解:由高斯定理,得到电位移矢量的空间分布,();,()。电场强度的空间分布:,();,();,()。球壳内电势:()\n球外第一种介质中的电势:球外第二种介质中的电势:9.半径为的均匀带电金属球壳里充满了均匀、各向同性的电介质,球外是真空,此球壳的电势是否为?为什么?答:球壳外电场分布,球壳电势为作业61.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带的电量都相等,则它们的静电能之间的关系是[]。球体的静电能等于球面的静电能球体的静电能大于球面的静电能球体的静电能小于面的静电能球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能答案:【B】解:设带电量为、半径为,球体的电荷体密度为。由高斯定理,可以求得两种电荷分布的电场强度分布,对于球体电荷分布:,();,()。对于球壳电荷分布:,();,()。可见,球外:两种电荷分布下,电场强度相等;球内:球体电荷分布,有电场,球壳电荷分布无电场。\n静电场能量密度两球外面的场强相同,分布区域相同,故外面静电能相同;而球体(并不是导体)内部也有电荷分布,也是场分布,故也有静电能。所以球体电荷分布时,球内的静电场能量,大于球面电荷分布时,球内的静电场能量;球体电荷分布时,球外的静电场能量,等于球面电荷分布时,球外的静电场能量。2.和两空气电容器串联起来接上电源充电,然后将电源断开,再把一电介质板插入中,如图6-1所示,则[]。两端电势差减少,两端电势差增大两端电势差减少,两端电势差不变两端电势差增大,两端电势差减小两端电势差增大,两端电势差不变答案:【B】解:电源接通时,给两个串联的电容器充电。充电量是相同的,是为。则两个电容器的电压分别为,电源断开后,插入电介质,两个电容器的电量不变,仍然都是。但的电容增大,因此两端的电压降低;而不变,因此,两端的电压不变。3.一平行板电容器,板间相距,两板间电势差为,一个质量为,电荷为的电子,从负极板由静止开始向正极板运动,它所需的时间为[]。答案:【D】解:两极间的电场,电子受力由4.将半径为的金属球接上电源充电到,则电场能量。答案:解:孤立导体球的电容为:,所以,充电到时,5.、为两个电容值都等于的电容器,已知带电量为,带电量为,现将、关联在一起后,则系统的能量变化。答案:解:未并联前,两电容器储存的总能量为:当并联后,总电容为:,总电量不变:,则并联后,总电压为:\n并联后,储存的总能量为:系统的能量变化为:6.一平行板电容器电容为,将其两板与一电源两极相连,电源电动势为,则每一极板上带电量为。若在不切断电源的情况下将两极板距离拉至原来的两倍,则电容器内电场能量改变为。答案:,解:(1)。电容器储存的静电场能量为(2)当增大两极板的距离时,平行板电容器电容为。因为电源未切断,故电容两端电压不变,则电容器储存的静电场能量为电容器储存的静电场能量的变化为:7.两层相对介电常数分别为和的介质,充满圆柱形电容器之间,如图6-2示。内外圆筒(电容器的两极)单位长度带电量分别为和,求:两层介质中的场强和电位移矢量;此电容器单位长度的电容。答案:同作业5中第6题的计算。8.充满均匀电介质的平行板电容器,充电到板间电压时断开电源。若把电介质从两板间抽出,测得板间电压,求:电介质的相对介电系数;若有介质时的电容,抽出介质后的电容为多少?抽出电介质时外力所做的功。解:(1)有电介质和无电介质时,电容器的电容间的关系:,切断电源,电容器带电量不变,,(2)(3),9.有一导体球与一同心导体球壳组成的带电系统,球的半径,球壳的内、外半径分别为,,其间充以空气介质,内球带电量时,求:带电系统所存储的静电能;用导线将球与球壳相连,系统的静电能为多少?解:(1)由导体的静电平衡条件和电荷守恒定律、高斯定理,可分析得:导体球上所带电量在球面,电量为;球壳内表面带电量为,外表面带电量为。由高斯定理可得各个区域的电场分布:,,\n,带电系统所储存的能量为:(2)当内球与球壳连在一起时,由于球与球壳是等势体,在球与球壳之间没有电场,;在两面上的电量中和,只有球壳外表面带电量,电场只分布在区域,可求得:作业71.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大。在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长为的一段导体上总的径向电流为,如图7-1所示,则在柱与筒之间与轴线的距离为的点的电场强度为[]。A.B.C.D.答案:【B】解:如图,通过半径为、高为的圆柱侧面的总电流为,则该处的电流密度为由电流密度与电场强度的关系(为电导率),得到2.一电子以匀速率作圆周运动,圆轨道半径为,它相当于一个圆电流,如图7-2所示,其电流强度是[]。A.B.\nC.D.答案:【A】解:在电子运动轨道上固定一个横截线,电子一个周期通过一次该横截线,即在一个运动周期时间内,通过横截线的电量为,因此,电流为3.单位正电荷从电源的负极通过电源内部移到正极时非静电力所作的功定义为该电源的电动势,其数学表达式为。答案:4.有一根电阻率为、截面直径为、长度为的导线。若将电压加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为,则电子平均飘移速率为。答案:,解:(1)设单位时间内流过导线横截面的自由电子数为,则单位时间内流过导线横截面的电量为,这就是电流,。按电流与电压的关系则(2)电子漂移距离所用时间,即在内,电子全部通过以为高、以为底的柱形底面,即在内柱形内的电子全部通过底面,其他电子都没有通过。因此,在内通过底面的电量为因此,电流为即得到,5.如图7-3所示的导体中,均匀地流着的电流,已知横截面,,的法线与轴线夹角为,试求:(1)三个面与轴线交点处的电流密度。(2)三个面上单位面积上的电流密度通量。解:(1)(2)6.圆柱形电容器,长为,内、外两极板的半径为,\n,在两极板间充满非理想电介质,其电阻率为,设在两极间加电压。求:(1)介质的漏电阻;(2)漏电总电流;(3)漏电流密度;(4)介质内各点的场强。解:(1)这里的球壳层的横截面可认为相同,球壳层的漏电阻:(2)(3)(4)作业81.如图8-1所示,载流的圆形线圈(半径)与正方形线圈(边长)通有相同电流,若两个线圈中心,处的磁感应强度大小相同,则半径与边长之比为[]。A.B.C.D.答案:【B】解:圆电流在其轴线上产生的磁场的磁感应强度为,方向沿着轴线在圆心处(),。通电正方形线圈,可以看成4段载流直导线,由毕萨定律知道,每段载流直导线在正方形中心产生的磁场的磁感应强度大小相等,方向相同,由叠加原理。\n2..如图8-2所示,四条平行的无限长直导线,垂直通过边长为正方形顶点,每条导线中的电流都是,这四条导线在正方形中心点产生的磁感应强度为[]。A.B.C.D.答案:【A】解:建立直角坐标系,则4根无限长载流直导线在正方形中心产生的磁感应强度为,,3.一根无限长直导线弯成图8-3所示的形状,中部是半径为、对圆心张角为的圆弧,当通以电流时,处磁感应强度的大小,方向为。答案:,方向垂直纸面向里解:将整个载流导线分为三段:直线、圆弧、直线。由毕萨定律可以判断出,三段载流导线在圆心处产生的电磁感应强度方向均沿着垂直纸面向里,因此,总的电磁感应强度方向沿着垂直纸面向里。两段载流直线在圆心处产生的电磁感应强度三分之一圆弧在圆心处产生的电磁感应强度在圆心处产生的总电磁感应强度方向垂直纸面向里。4.如图8-4所示,两个同心半圆弧组成一闭合线圈,通有电流,设线圈平面法向垂直纸面向里。则圆心点的磁感应强度,线圈的磁矩。\n答案:,解:由毕萨定律可知,两个半圆连线上的电流圆心处产生的电磁感应强度为零在半径为的半圆弧在圆心处产生的电磁感应强度垂直于纸面向外(与反向)半径为的半圆弧在圆心处产生的电磁感应强度垂直于纸面向里(与同向)再由毕萨定律可知,两个半圆连线上的电流圆心处产生的电磁感应强度为零圆心处总的电磁感应强度线圈的磁矩5.在坐标原点有一电流元。试求该电流元在下列各点处产生的磁感应强度?(1);(2);(3);(4);(5)解:该电流元产生的电磁感应强度表示为①,②,③,④,⑤,6.从经典观点来看,氢原子可看作是一个电子绕核高速旋转的体系,已知电子以速度在半径的圆轨道上运动,求:电子在轨道中心产生的磁感应强度和电子的磁矩大小。解:角速度,7.在一半径的无限长半圆柱形金属薄片中,自上而下地有电流通过,试求:圆柱轴线上任一点的磁感应强度。解:如图,取过场点的横截面为\n平面,横截面与金属薄片的交集为一个半圆弧。可以将电流分成无限多小的无限长电流,圆心角为的电流强度为它对场点的磁场贡献为对从0到积分,可得8.在电子仪器中,为了减小与电源相连的两条导线的磁场,通常总是把他们扭在一起,为什么?答:与电源相连的两根导线的电流方向相反,扭在一起可以使磁场尽可能相互抵消,以免产生磁干扰。作业91..如图9-1所示,在无限长载流导线附近作一球形闭合曲面当面向长直导线靠近的过程中,穿过面的磁通量及面上任一点的磁感应强度大小的变化为[]。A.增大,不变B.不变,增大C.增大,增大D.不变,不变答案:【B】解:由磁场的高斯定理,即穿过闭合曲面的磁通量为零,或者说,磁感应线为闭合曲线,所以F不变;由于长直载流导线的磁场,与距离成反比,所以,当闭合曲面靠近载流直导线时,闭合曲面上各点的磁感应强度增大。2.一电子以速度垂直地进入磁感应强度为的均匀磁场中,此电子在磁场中运动的轨迹所围的面积内的磁通量将是[]。A.反比于,正比于B.反比于,正比于C.正比于,反比于D.正比于,反比于答案:【A】解:电子垂直于磁场进入磁场,将在洛伦兹力的作用下,在垂直于磁场的平面内作圆周运动。电子在磁场中运动的轨迹半径由于磁场与面积垂直,所围的面积内的磁通量3.如图9-2所示,一无限长密绕真实螺线管,通电流强度为。对套在螺线管轴线外的环路(螺线管穿过环路)作积分。\n答案:解:①根据安培环路定理;②真实螺线管。4.两平行长直导线相距,每条导线载有电流(如图9-3所示),则通过图中矩形面积的磁通量。答案:解:电流和大小相等,方向相反,由毕萨定律可以判知,它们在矩形面积内产生的电磁感应强度方向均垂直于纸面向外。由对称性可知,电流和产生的电磁感应强度穿过矩形面积的磁通量大小相等,因此只须计算一个电流产生磁场的磁通量。5.有一很长的载流导体直圆管,内半径为,外半径为,电流强度为,电流沿轴线方向流动,并且均匀地分布在管壁的横截面上,如图9-4所示。求空间各点的磁感应强度,并画出曲线(为场点到轴线的垂直距离)。解:以轴线为中心的同心圆各点场感应强度大小相等,方向沿圆周切线。取此同心圆为环路,由对称性可知,在积分环路上,感应强度大小相等,方向均沿着环路。应用安培环路定理,电流密度为,则;;。磁感应强度分布为;;6.矩阵截面的螺线环,尺寸见图9-5。(1)求环内磁感应强度的分布;(2)证明通过螺线环截面(图中阴影区)的磁通量为,其中为螺线环线圈总匝数,为其中电流强度。解:(1)在与螺线环同心的圆周上各处磁场大小相同,方向沿圆周切线。取此圆周为环路,应用安培环路定理,\n,;(2)7.在无电流的空间区域,如果磁感应线是平行直线,则磁场一定是均匀的,为什么?证明:用高斯定理,可以证明图中;用安培环路定理,可以证明图中命题得证作业101.如图10-1所示,半导体薄片为型,则两点的电势差[]。A.小于零B.等于零C.大于零答案:【A】解:型半导体是电子导电,电子在外电压的作用下,沿电流相反方向漂移。这一定向运动,在外磁场的作用下,电子受到洛伦兹力,,方向由指向,即电子还要向端漂移。这样,在端积聚负电荷,在端积聚正电荷,形成一个由指向的横向电场,这一横向电场阻止电子向端积聚。随着电子的积聚,横向电场越来越大,当电子受到的横向电场的库仑力与电子受到的洛伦兹力达到平衡时,电子不再宏观的横向漂移,形成稳定的横向霍尔电场,在、两端形成稳定的霍尔电压。由于端是正电荷、端是负电荷,所以,端电势高、端电势低。2.如图10-2所示,半圆形线圈半径为,通有电流,在磁场的作用下从图示位置转过时,它所受磁力距的大小和方向分别为[]。A.,沿图面竖直向下B.,沿图面竖直向上C.,沿图面竖直向下D.,沿图面竖直向上答案:【D】解:载流线圈的磁矩为\n载流线圈在磁场中受到的磁力矩为如图,在没有转动前,垂直于纸面向外,与磁场垂直,载流线圈受到的磁力矩最大方向为竖直向上,在这一磁力矩的作用下,线圈将转动。从上俯视,线圈逆时针转动。当线圈转过时,与磁场成角,则此时线圈受到的磁力矩为方向为:竖直向上。如图,俯视图。3.在一无限长刚性载流直导线产生的磁场中,把同样的载流导线分别从处移到处、从处移到处(、、位置如图10-3所示)。在移动过程中导线之间保持平行,若两次移动磁力做的功分别记为和,则[]。A.B.C.D.答案:【B】解:由毕萨定律和安培力,可以判断出,载流直导线受到的安培力指向圆心。因此,无论载流直导线从移动,还是从移动,安培力都作正功,不为零。如图,从移动,安培力作功;从移动,安培力作功。而从移动和从移动,矢径的变化是一样的,因此,两种情况,安培力作功相同。4.一长直导线载有的电流,在距它为处有一电子由于运动受洛仑兹力的方向如图10-4所示,且。设电子在它与组成的平面内运动,则电子的速率,在图中画出的方向。答案:解:电子在平面内运动,即速度与洛伦兹力在同一平面内。而点的磁场方向垂直纸面(平面)向里,所以电子运动速度与磁场垂直。,而点的电磁感应强度为\n所以,电子的运动速率为由洛伦兹力公式,可以找出电子(带负电荷)在点的速度方向,如图。可见,电子将逆时针旋转。5.在空间有同样的三根直导线,相互间的距离相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三条导线将运动。答案:向三角形中心运动。解:如图,因为同向电流导线相吸引。所以,三条载流导线向三角形中心运动。6.厚度的金属片,载有电流,处于磁感应强度为的均匀磁场中,(如图10-5所示),测得霍尔电势差为。(1)计算片中电子的漂移速度。(2)求带电电子的浓度。(3)和哪点电势较高?(4)如果用型半导体代替该金属片,和哪点电势高?解:(1)当稳定时,金属中自由电子所受磁场的洛仑兹力与霍尔电场库仑力平衡(2)两端的霍尔电势差为得电子浓度为(3)如图,在金属中,在外电场的作用下,自由电子的运动方向与电流的方向相反。由洛伦兹力可知,电子受到的洛伦兹力方向是由指向,电子向端偏转。端积聚负电荷,端积聚正电荷。所以点电势高,点电势低。(4)型半导体是空穴导电,即正电荷导电,如图。正电荷空穴的运动方向与电流方向相同。洛伦兹力,仍然是由指向,但此时是正电荷空穴向端偏转,端积聚正电荷,端积聚负电荷。所以点电势高,点电势低。7.一矩形线圈,边长为和,其中通电流,放在的均匀磁场中,线圈平面与磁场方向平行(10-6所示)。求:(1)线圈所受力矩的大小和方向;\n(2)若此线圈受力矩作用转到线圈平面与磁场垂直的位置,力矩做功多少?解:(1)载流线圈在磁场中所受的磁力矩为当载流线圈平面与磁场平行时,载流线圈平面的法线方向与磁场垂直,磁力矩最大方向:载流线圈平面的法线方向垂直纸面向外,所以,磁力矩方向竖直向上。(2)在载流线圈转动过程中,磁力矩做的功等于:这里:;所以:作业111.载流长直螺线管内充满相对磁导率为的均匀抗磁质,则螺线管内中部的磁感应强度和磁场强度的关系是[]。A.B.C.D.答案:【D】解:对于非铁磁质,电磁感应强度与磁场强度成正比关系抗磁质:,所以,2.在稳恒磁场中,关于磁场强度的下列几种说法中正确的是[]。A.仅与传导电流有关。B.若闭合曲线内没有包围传导电流,则曲线上各点的必为零。C.若闭合曲线上各点均为零,则该曲线所包围传导电流的代数和为零。D.以闭合曲线为边界的任意曲面的通量相等。答案:【C】解:安培环路定理,是说:磁场强度的闭合回路的线积分只与传导电流有关,并不是说:磁场强度本身只与传导电流有关。A错。闭合曲线内没有包围传导电流,只能得到:磁场强度的闭合回路的线积分为零。并不能说:磁场强度本身在曲线上各点必为零。B错。高斯定理,是说:穿过闭合曲面,场感应强度的通量为零,或者说,.以闭合曲线为边界的任意曲面的通量相等。对于磁场强度,没有这样的高斯定理。不能说,穿过闭合曲面,场感应强度的通量为零。D错。安培环路定理,是说:磁场强度的闭合回路的线积分等于闭合回路包围的电流的代数和。C正确。3.图11-1种三条曲线分别为顺磁质、抗磁质和铁磁质的曲线,则表示;表示;表示。答案:铁磁质;顺磁质;抗磁质。\n4.某铁磁质的磁滞回线如图11-2所示,则图中(或)表示;(或)表示。答案:剩磁;矫顽力。5.螺线环中心周长,环上线圈匝数,线圈中通有电流。(1)求管内的磁场强度和磁感应强度;(2)若管内充满相对磁导率的磁介质,则管内的和是多少?(3)磁介质内由导线中电流产生的和磁化电流产生的各是多少?解:(1)做一圆形的环路,由的安培环路定理:,对管内,此时无磁介质,则:(2)管内充满磁介质时,(3)磁介质内由导线中电流产生的磁场由磁化电流产生的磁场6.一无限长圆柱形直导线,外包一层相对磁导率为的圆筒形磁介质,导线半径为,磁介质外半径为,导线内有电流通过(见图11-3)。求:(1)介质内、外的磁感应强度的分布,画出图线;(2)介质内、外的磁场强度的分布,画出曲线。解:在以圆柱轴线为对称轴的圆周上,各处磁场强度大小相等且沿圆周切线方向。应用H的安培环路定理,在导体内,:,在导体外,:,因此\n7.介质中安培环路定理为,为正向穿过闭合回路的传导电流的代数和,这是否可以说:只与传导电流有关,与分子电流无关?答案:不能。解:介质中的安培环路定理说明定理的左端,即的环流只也传导电流有关,与分子电流无关;并不可以说只与传导电流有关,与分子电流无关。这里的环流和是两个不同的概念。作业121.在如图12-1所示的装置中,当不太长的条形磁铁在闭合导线圈内作振动时(忽略空气阻力),则[]。A.振幅不变B.振幅先减小后增大C.振幅会逐渐加大D.振幅会逐渐减小答案:【D】解:楞次定律。当磁铁在闭合导线圈内作振动时,穿过线圈的磁场变化,在线圈中产生感生电动势,在闭合线圈中有感生电流。这一电流又产生磁场,但总是阻碍由于磁铁的振动而引起的穿过线圈的磁场的变化。弹簧与磁铁组成的振子的振动能量会逐渐减小,因此,振幅会逐渐减小。振子会损失能量,损失的能量,通过线圈中的感生电流转化为焦耳热。2.如图12-2所示,在均匀磁场中,有一半径为的导体圆盘,盘面与磁场方向垂直,当圆盘以匀角速度绕过盘心的与平行的轴转动时,盘心与边缘上的点间,其电势差等于[]。A.B.C.D.答案:B】解:由于导体圆盘,相当于有无数多由盘心到盘边的直导线绕盘心转动,切割磁场线,因此,会在盘心与盘边产生动生电动势。在上,距盘心处取线元,它所产生的动生电动势为由图可见,与垂直、与方向相同,所以\n电动势的方向为低电势指向高电势,即,3.如图12-3所示,一长度为的直导线在均匀磁场中以恒定速度移动,直导线中的动生电动势为。答案:0解:取取线元,则由于与共面(平行于纸面),则垂直于纸面,而也平行于纸面,所以,4.长直导线通有电流,在其附近有一导线棒,,离长直导线距离(如图12-4所示)当它沿平行于直导线的方向以速度平移时,导线棒中的感应电动势多大?哪端的电势高?(导线棒与长直导线共面且垂直)解:如图,建立直角坐标系,取线元,则无限长载流直导线,产生的磁场为(在棒处)则线元的动生电动势为整个金属棒中感应电动势为由于,所以,端电势高。5.如图12-5所示,长直导线中通有电流,另一矩形线圈与长直导线共面共10匝,宽,长,以的速度向右运动,求:时线圈中的感应电动势。解1:动生电动势。将矩形导体框看成4段导体棒,则每个棒都在无限长载流直导线产生的磁场中\n运动,都有可能有动生电动势,总的电动势是每段动生电动势的代数和。如图,建立直角坐标系,则无限长载流直导线,产生的磁场为(在棒处)线元的动生电动势为线元的动生电动势为,线元的动生电动势为,线元的动生电动势为,以顺时针方向为线框中电动势的正方向,则线圈共有匝,所以,电动势为解2:感生电动势。由于无限长载流导线产生的磁场与场点到导线的距离成反比,线圈在移动的过程中,穿过线圈平面的磁通量发生变化,因此在线圈中产生感生电动势。如图,建立直角坐标系。设时刻边距离载流直导线,感生电动势的正方向为顺时针方向,即取磁通量的正方向垂直纸面向里。则速度无限长载流直导线,产生的磁场为(在棒处)\n取时刻的面积元,则穿过单匝线圈中的磁通量为穿过单匝线圈的磁通量为由法拉第电磁感应定律,得到单匝线圈产生的电动势为当时,总电动势为解3:线框的上下两条边不切割磁力线,所以不产生感应电动势,只有左右两条边切割磁力线产生感应电动势,在时,设左边处的磁感应强度为,右边处为,则此时线框中的磁感应电动势为:6.如图12-6所示,一长方形平面金属线框至于均匀磁场中,磁场方向与线框平面法线的夹角为,磁感应强度,可滑动部分的长度为,以的速度向右运动,求线框中的感应电动势。解1:动生电动势。段导体棒在匀强磁场中运动,产生动生电动势。段导体棒上的动生电动势等于线圈中的电动势。线元的动生电动势为解2:感生电动势。段导体棒运动,矩形导体线圈的面积变化,穿过线圈的磁通量变化,在线圈中产生感生电动势。\n如图,建立直角坐标系。设时刻边距离载流直导线,感生电动势的正方向为顺时针方向,即取磁通量的正方向垂直纸面向里。取时刻的面积元,则穿过线圈中的磁通量为穿过线圈的磁通量为由法拉第电磁感应定律,得到单匝线圈产生的电动势为解3:对产生电动势起作用的是垂直于速度的磁场分量7.将尺寸完全相同的铜环和木环适当放置,使通过两环中的磁通量的变化率相等。问:在两环中是否产生相同的感应电场和感应电流?答:会产生相同的感应电场,但在铜环中会有感应电流产生,而在木环中没有感应电流产生。因为铜是导体,而木头不是。作业131.用导线围成的回路(两个以O点为圆心,半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图13-1所示。如磁场方向垂直图面向里,其大小随时间减小,则(A),(B),(C),(D),中正确表示涡旋电电场方向及感应电流的流向的是[]。答:D解:由楞次定律判断感应电流的方向。由于磁场垂直于纸面向里,并且减小,所以,感生电流产生的磁场垂直于纸面向里,由此可以判断出:回路中感生电流的方向是顺时针的。注意:由于两环之间的导线上没有电动势,所以不同环之间没有电流。2.均匀磁场限制在圆柱形空间(如图13-2)。磁场中A,B两点用直导线AB连接,或用弧导线AB连接,则[]。A.直导线中电动势较大B.只有直导线中有电动势C.两导线中的电动势相等D.弧导线中电动势较大答:A解:连接和,则由于感生电场是同心圆。在上,线元与感生的涡旋电场垂直;在上,线元与感生的涡旋电场垂直。因此,和上的电动势为零\n由法拉第电磁感应定律,回路上的感应电动势为则弧线上的电动势为,弧线上的电动势为回路上的感应电动势为则直线上的电动势为,由于,所以3.如图13-3所示,闭合线圈共50匝,半径r=4cm,线圈法线正向与磁感应强度之间的夹角,磁感应强度。求:时感应电动势的大小和方向。解:穿过一个线圈的磁通量为:感应电动势为:(取俯视时,逆时针方向为感生电动势的正方向)4.如图13-4所示,一均匀磁场被限制在的圆柱形空间内,磁场以的均匀速率增加,已知,,求:等腰梯形导线框中的感应电动势,并指出其方向。解:线框abcda所围面积中只有abefa一部分有磁通量,此面积,回路abcda方向与磁场方向一致感应电动势负号表示其方向由d到c。\n5.如图13-5所示,随时间变化的均匀磁场,磁感应强度,在其中放一固定的U形导轨,导轨上有一长为的导体杆可无摩擦滑动,设时可滑动杆与重合,并开始以的速度匀速向右运动,求任一瞬时导体杆中的电动势。解:穿过导体杆与导轨形成的线圈的磁通量:导体杆中的电动势为:6.一块金属在均匀磁场中平移或旋转,金属中会产生涡流吗?[答]不会产生涡电流。因为涡旋电动势是由磁场随时间变化产生。7.变压器的铁芯总是做成片状的,而且涂上绝缘漆互相隔开,为什么? [答]减少涡旋电流5如图13-5所示,随时间变化的均匀磁场,磁感应强度,在其中放一固定的U形导轨,导轨上有一长为的导体杆可无摩擦滑动,设时可滑动杆与重合,并开始以的速度匀速向右运动,求任一瞬时导体杆中的电动势。解:穿过导体杆与导轨形成的线圈的磁通量:回路中的感生电动势为:这是整个回路的感生电动势。在时刻,回路的长度为则在时刻,导体棒上的感生电动势为在时刻,导体棒上的动生电动势为在时刻,导体棒上的动应电动势为\n作业141关于长直螺线管的自感系数的值,下列说法中错误的是[]。A.螺线管的半径越大,越大    B.充有铁磁质的比真空的大C.通以的电流的值越大,越大  D.单位长度的匝数越多,越大.答:【C】解:长直螺线管的自感系数,与螺线管是否通电流无关。2.对于单匝线圈取自感系数的定义为。当线圈的几何形状,大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L[   ]A.变大,但与电流不成反比关系   B.不变C.变大,与电流成反比关系     D.变小答:【B】解:自感系数只与线圈的几何形状,大小及周围磁介质分布有关,与是否通有电流无关。3.中子星表面的磁场估计为,则该处的磁能密度为    。按质能关系,质量密度为    。解:磁场能量密度为取中子星表面附近体积,体积内具有的磁场能量为,质量为。按爱因斯坦质能关系,则,,其中c为真空光速。4.半径为的螺线管,长,上面均匀密绕1200匝线圈,线圈内为空气。求:(1)求此螺线管的自感系数。(2)当螺线管中电流以的速率变化时,在线圈中产生的自感电动势多大?[解](1)(2)5.如图14-1,面积为总匝数的线圈,套在面积为长为总匝数为的螺线管2上,螺线管中通有电流,\n求:(1)线圈1中的磁通量;(2)线圈与螺线管的互感。解:螺线管2产生的磁场(认为在线圈2内部,外部为零),其中(1)螺线管2产生的磁场,穿过线圈1的磁通量(磁链),其中(2)螺线管与线圈之间的互感系数6.一同轴电缆由中心导体圆柱和外层导体圆筒组成,两者半径分别为和,筒和圆柱之间充以电介质,电介质和金属的均可作取1。求:此电缆通过电流(由中心圆柱流出,由圆筒流回)时,单位长度内存储的磁能,并通过和自感磁能的公式比较求出单位长度电缆的自感系数。解:磁场被限制在同轴电缆内,由安培环路定理可得磁场能量也只储存在电缆内,在()范围内,取长度为的一段柱壳(),其中储存的磁能为同样在()范围内,取长度为的一段柱壳(),其中储存的磁能为因此,长度为的一段电缆中储存的总磁能为单位长度内储存的磁能为由自感磁能与自感系数的关系,得7.如果电路中通有强电流,当突然打开电闸断电时,就有一大火花跳过电闸,为什么?[解]断电时电流变化剧烈,由于自感,在电闸的两极积聚大量的正负电荷,形成很强的电场,击穿空气。\n8.两个相距不太远的线圈,如何放置可使其互感最大?如何放置可使其互感为零?解:平行放置互感最大,垂直放置互感为0作业151.下述说法中正确的是[]A.位移电流的热效应服从焦耳——楞次定律。B.位移电流由变化的磁场产生的C.位移电流的磁效应不服从安培环路定理D.位移电流是由变化的电场产生的答:[D]解:变化的电场产生位移电流(或者说,变化的电场产生磁场)。在产生磁场方面,位移电流与传导电流是一样的,位移电流的磁效应服从安培环路定理。但位移电流不是电子的定向移动,因此,位移电流不产生焦耳热效应。麦克斯韦的“位移电流”假说,与他的“涡旋电场”假说不同,在涡旋电场的作用下,电子是会作定向移动的。2.下列说法中正确的是[]A.变化的电场所产生的磁场,一定随时间变化B.变化的磁场所产生的电场,一定随时间变化C.有电流就有磁场,没有电流就一定没有磁场D.变化着的电场所产生的磁场,不一定随时间变化答:[D]解:变化的电场所产生的磁场,与电场随时间的变化率成正比,而可以是常数,即电场随时间的变化率固定时,变化的电场所产生的磁场也是不随时间变化的,A错。变化的磁场所产生的电场,与磁场随时间的变化率成正比,而可以是常数,即磁场随时间的变化率固定时,变化的磁场所产生的电场也是不随时间变化的,B错。在电流的周围存在磁场,即有电流就有磁场;变化的电场也可以产生磁场,C错。3.真空中一平面电磁波表达式为,,在时刻,处的电场强度指向轴负向,则该时刻处的磁场强度方向应该是[B]A.X轴负向B.Z轴负向C.X轴正向D.Z轴正向答[B]解:电磁波的表达式得知,电磁波的传播方向沿轴负方向。对于平面波,波的传播方向就是能流方向,即坡印亭矢量方向。由坡印亭矢量,得到电场、磁场方向满足如下关系\n如图,可见,在时刻,处,磁场强度方向必定沿着轴负方向。4.对于平面电磁波,和的相位 ,在空间任一点和的量值关系为   ,和的偏振方向彼此  ,且均与波的传播方向  ,从而可知电磁波是  。答:相同;;垂直;垂直;横波。5.由两块圆形导体板组成的平板电容器,圆板半径为,中间为空气。当以的电流充电时,求:(1)电容器内部的电场强度变化率;(2)极板间的位移电流密度;(3)极板间的位移电流;(4)在圆板边缘处的磁感应强度。解:平板电容器以恒定电流充电,板上的电荷量随时间正比增加;板上的电荷要在电容器内产生电场,电场强度随电荷量的增加,正比增强;电容器内变化的电场,产生位移电流;位移电流在电容器内产生磁场。(1)极板上电量随时间的变化:,电荷面密度随时间的变化:,极板间电场强度随时间的变化:,则电场随时间的变化率:(2)极板间的电位移随时间的变化:,位移电流密度:(3)极板间的位移电流:,(4)极板内,只有位移电流。由于极板是圆形板,具有轴对称性,因此,位移电流在板内产生的磁场也具有轴对称性。由安培环路定理,6.如图15-1所示,平板电容器之间加交变电场 。求距电容器中心连线处的点,经过,位移电流产生的磁场强度的大小。解:极板间的位移电流密度以为半径绕极板中心作圆形安培环路,由安培环路定理:,解出7.真空中沿轴负向传播的平面电磁波,其磁场强度的表达式为 ,求电场强度的波的表达式。\n解:作业161.在地面参考系测得一星球离地球5光年,宇航员欲将此距离缩为3光年,他乘的飞船相对地球的速度应是[]A.B.C.D.答:[C]解:这里,要求宇航员的钟走3光年,是原时:;地面上的时钟测量,宇航员走5光年,是测时:。因此由,得到,。注意:地面上仍然认为宇航员走了5光年。2.火箭的固有长度为,其相对地面以作匀速直线运动。若火箭上尾部一射击口向火箭首部靶子以速度发射一子弹,则在火箭上测得子弹从出射到击中靶的时间间隔为[]。A.B.C.D.答:[B]解:事件发生在火箭上,与地面无关。当然,地面上测量这一时间间隔是不同的。3.在惯性系中轴上相距处有两只同步钟和,在相对系沿轴以速运动的惯性系中也有一只同样的钟。若轴平行,当相遇时,恰好两钟读数都为零,则当与相遇时系中钟的读数为,系中钟的读数为。答:,解:如图,在系测量,和的距离为,钟正在以速度从向运动,钟从到达所用的时间为这也就是钟的读数。由于和在\n系中是静止的,所以,系中测量,和的距离是原长;在系看来,和以速度运动,和的距离是测量长度,因此由于在系看来,以速度运动,运动距离所用时间为这就是钟的读数。可见,钟与钟相遇时,确实是:钟读数小、钟读数大,即似乎确实能分辨出来“钟慢、钟快”。钟相对于系运动,钟确实应该慢;而在系看来,钟也是运动的,也经该慢。这似乎出现了矛盾。如图,认为:钟与钟相遇时,钟与钟根本没有校准,钟的指针比钟提前。(或者,从经典物理大致考虑:信号的传播是需要时间的,钟指针指向“0”这一信号传到时,将钟调到“0”,此时,钟已经过“0”了,即钟比钟提前了)。如图,认为:在对“相遇到钟与钟相遇所用时间的测量”中,和钟的测量结果是一样的,都比钟测量的结果短,即和钟都慢;只不过是在相遇时,钟的指针“提前”了,从而在钟与钟相遇时,钟的“读数”比钟的“读数”大。可见,上面的结果,并不违反相对论,反而正是相对论的必然结果。4.根据狭义相对论的原理,时间和空间的测量值都是,它们与观测者的密切相关。答:相对的,相对运动状态。5.、系是坐标轴相互平行的两个惯性系,系相对与沿轴正方向匀速运动。一刚性尺静止于系中,且与轴成角,而在系中测得该尺与轴成角,试求:、系的相对运动速度。解:如图,在系中测量,,所以在系中测量,,所以由洛伦兹变换,得到,\n6.一匀质矩形薄板,静止时边长分别为和,质量,试计算在相对薄板沿一边长以速运动的惯性系中测得板的面密度。解:在相对于板运动的参照系中,长度收缩,同时质量增大。质量为:;长度为:,质量密度为7.列车和隧道静止时长度相等,当列车以的高速通过隧道时,分别在地面和列车上测量,列车长度与隧道长度的关系如何?若地面观测者发现当列车完全进入隧道时,隧道是的进、出口处同时发生了雷击,未击中列车,按相对论的理论,列车上的旅客会测得列车遭雷击了吗?为什么?解:(1)由于隧道相对于地面是静止的,而列车是运动的,所以,地面测量隧道的长度是原长,地面测量列车的长度是测长,即地面测量:隧道长,列车长地面测量隧道长与列车长的关系为:由于列车相对于列车是静止的,而隧道是运动的,所以,列车测量列车的长度是原长,列车测量隧道的长度是测长,即列车测量:列车长,隧道长地面测量隧道长与列车长的关系为:(2)地面测得雷击时刻火车完全位于隧道内,没有遭雷击。列车上的测量同样得出列车没有遭雷击。设列车头到达隧道出口为事件,闪电到达隧道出口为事件;列车尾到达隧道进口为事件,闪电到达隧道进口为事件。在地面上测量,事件与事件是同时同地发生的两个事件,在任何惯性系中测量都是同时发生的,因此在列车上测量,事件与事件是同时同地发生的两个事件,即在列车上测量,列车头与闪电同时到达隧道出口,闪电没有击中列车头;在地面上测量,事件与事件是同时同地发生的两个事件,在任何惯性系中测量都是同时发生的,因此在列车上测量,事件与事件是同时同地发生的两个事件,即在列车上测量,列车尾与闪电同时到达隧道进口,闪电没有击中列车尾。事实上,“列车头到达隧道出口的事件”与“列车尾到达隧道进口的事件”,是在地面这一惯性系中不同地点同时发生的两个事件,在列车这一惯性系中测量就不可能是同时的;“闪电到达隧道出口的事件”与“闪电到达隧道进口的事件”,是在地面这一惯性系中不同地点同时发生的两个事件,在列车这一惯性系中测量就不可能是同时的。设“闪电到达隧道出口的事件”在地面测量,在列车上测量;“闪电到达隧道进口的事件”在地面测量,在列车上测量。由于,则可见,出口处雷击先发生,此时列车头部未出隧道;入口处雷击后发生,此时列车尾部进入隧道。8.伽利略相对原理与狭义相对论的相对性原理有何相同之处?有何不同之处?\n[答]相同:力学规律对一切惯性系成立;不同:狭义相对论的相对性原理要求所有物理规律对一切惯性系成立。9.“同时性”的相对性是针对任意两个事件而言的吗?[答]不是,要求两个事件发生在不同地点。同时同地发生的两个事件,在任何惯性系中测量都是同时发生的。作业171.实验室测得粒子的总能量是其静止能量的K倍,则其相对实验室的运动速度为[]A.B.C.D.答:[C]解:,,,2.把一静止质量为的粒子,由静止加速到,所需作的功为[]A.B.C.D.答:[D]解:3.观测者乙以的速率相对观测者甲运动,若甲携带质量为的物体,则(1)乙测得物体的质量为:;(2)甲测得物体的总能量为:;(3)乙测得物体的总能量为:。答:;;。解:,(1)物体相对于乙在运动,测得的是运动质量(2)物体相对于甲静止,测得的是静止能量(3)物体相对于乙运动,测得的是运动的总能量4.电子静止质量,当它以的速度运动时,按相对论理论,其总能量为,动能为,按经典理论,其动能为。答:;;。解:(1)(2)动能等于总能与静止能量之差\n(3)按经典物理,电子动能为5.子的静止质量是电子质量的207倍,在其自身参照系中平均寿命。若在实验室参照系中得其平均寿命。试问:实验室测得其质量是电子静止质量的多少倍?解:依题,由子的静止寿命(原时)与运动寿命(测时),可以求得子的运动速度则子的运动质量为子的静止质量与电子的静止质量之比为则子的运动质量与电子的运动质量之比为6.粒子的动能等于其静止能量的一半,求其运动速度。解:;;7.已知系相对系以的速度沿X轴正向运动。一静止质量为的粒子也沿X轴运动,在系中测得粒子速率。求:(1)相对系,粒子的动能;(2)相对系,粒子的速度;(3)在系中测,粒子的总能量。解:(1);;(2);(3)\n8.根据相对论的理论,实物粒子在介质中的运动速度是否有可能大于光在该介质中的传播速度。讨论:相对论只给出真空中的光速是物体的极限速度,光在介质中的速度小于光速,则实物粒子在介质中的速度有可能大于光在介质中的传播速度。9.如果、是惯性系中互为因果关系的两个事件(是的原因,先于发生),问:是否能找到一个惯性系,在该系中测得先于发生,出现时间顺序颠倒的现象?答:不能。解:(数学讨论略)相对论理论也不可能不遵守客观事实。因果律不能颠倒,但没有因果联系的两个事件,在不同的惯性系中,发生的先后顺序又可能颠倒。作业181两个条件相同的物体,一个是黑的,一个是白的,把它们放在火炉旁,则色的物体升温快?如果把它们放在低温的环境中,则色的物体降温快。答:黑;黑。解:黑色物体吸收本领大,同时,其辐射能力也大。2绝对黑体是[]A.不能反射但是能发射所有的电磁辐射B.能吸收射任何电磁辐射,也能发射电磁辐射C.能吸收任何电磁辐射,却不能发射电磁辐射D.不能反射也不能发射任何电磁辐射答:[A]解:C和D肯定错;B没有说“发射所有电磁辐射”。3.将星球近似看做绝对黑体,利用维恩位移定律,可测量星球的表面温度。设测得北极星的,则北极星的表面温度为;由该定律可知,当黑体的温度升高时,最大单色辐射本领对应的波长将向移动。答:;短波方向。解:由维恩位移定律有,当温度升高时,黑体辐射的最强电磁辐射的波长变短。4.绝对黑体的辐射本领与表面温度关系是;设空腔上小孔的面积为每分钟向外辐射的能量,则空腔的温度。答:,852K解:由斯特藩-波尔兹曼定律,得到852K5.光电效应的实验规律是:(1)饱和光电流与照射光的成正比;(2)光电子的最大初动能与有关,与无关;(3)要产生光电效应,对照射光的要求是。答:强度;照射光的频率,光的强度;频率大于该金属的红限频率6.写出光电效应的爱因斯坦公式中各项的物理意义。答:入射光子的能量,逸出电子的最大初动能,金属逸出功\n7.在加热黑体过程中,其最大单色辐射本领的波长由变到,计算其总辐射本领增加多少倍?解:由维恩位移定律及斯特藩-波尔兹曼定律,有8.从金属铝中逸出一个电子需要的能量.今有波长的紫外线照射铝表面,求:(1)光电子的最大初动能;(2)遏止电压;(3)铝的红限波长.解:逸出功,由爱因斯坦光电效应方程,得到(1)(2),(3),9.人体向外发出热辐射,为什么在黑暗中看不见人体发亮?[答]温度低,辐射波长太长,肉眼看不见作业191.康普顿效应的主要特点是【】A.散射光的波长均比入射光的波长短,波长与散射物的性质无关。B.散射光的波长均比入射光的波长长,波长与散射物的性质有关。C.散射光中既有比入射光的波长长的成分,也有与入射光的波长相同的成分;波长与散射物的性质无关。D.散射光中既有比入射光的波长长的成分,也有与入射光的波长相同的成分;波长与散射物的性质有关。答:[C]2.在康普顿散射中,设反冲电子的速度为0.6c,则因散射使电子获得的能量是其静止能量的【】A.0.5倍B.0.25倍C.2倍D.1.5倍答:【B】解:散射后,反冲电子的总能量为反冲电子获得的能量,即反冲电子的动能为3.以一定频率的单色光照射在某金属上,测得其光电流的曲线如图实线所示,然后在光强不变增大照射光频率,测得光电流得曲线如图19-1中虚线所示,则满足题意的图是【】。O(A)(B)O(C)(D)答:【B】\n解:由光电效应方程:,且,可见,当增大照射光频率时,逸出的光电子最大初动能增大,反向截止电压数值上增大,所以A和C错;光的强度:,光强不变,增大光的频率,则光子数应减少,单位时间内逸出的光电子数减少,因而虚线的饱和光电流应减小。这里注意:光电效应中,饱和电流与光强成正比,是对入射光频率不变的情况而言。4.康普顿效应是指____________________________,这可以用光子与___________进行碰撞来解释,在此过程中________与___________________守恒。答:X射线通过物质发生散射时,出现波长比入射光波长长的散射光,散射光波长改变的现象;原子中受原子核束缚较小的外层电子;动量,能量5.波长为300nm的光照在某金属表面产生光电效益,已知光电子的能量范围从0到。求(1)遏制电压;(2)红限频率。(普朗克常数,电子电量)解:(1)光电子的最大初动能为,则,(2)由和,得到6.钨的逸出功为4.58eV。(1)求钨的红限频率;(2)分别求出照射光波长为200nm和250nm时的遏制电压。解:(1),,(2),时,当时,7.在康普顿散射中,若照射光光子能量与电子的静止能量相等,求;(1)散射光光子的最小能量;(2)反冲电子的最大动量。解:(1)由已知,则有入射光子的波长为由,有散射光子能量最小时,其波长最大,此时,因此,散射的最大波长为\n,散射光子的最小能量为(电子静止能量0.511MeV)(2)当散射光子有最小能量时,反冲电子的动能最大,则反冲电子的动量最大。如图,由动量守恒,则反冲电子的最大动量:8.光电效应和康普顿效应在对光子的粒子性认识方面有不同意义吗?[答]光电效应:光子具有能量,能量守恒康普顿效应:光子还具有动量,能量和动量守恒9.为什么可见光作为入射光一般观察不到康普顿散射效应?[答]由康普顿散射公式可说明:若入射光可见光,如其波长为400nm,则最大的,则,因而很难观察到。作业201.设氢原子的质量为m,动能为,其德布罗意波长为【】A.B.C.D.答:【D】[解]按非相对论的动量与动能的关系:,则氢原子的德布罗意波长为2.欲使电子腔中电子的德布罗意波长为0.1nm,加速电压应为【】A.150VB.122.5VC.1.5VD.12.25VE.24.4V答:【A】[解]按非相对论的动量与动能的关系:和加速电压与动能的关系,以及德布罗意波长,得到,因此或直接按公式èU=150V3.如图20-1所示一束动量为P的电子,通过缝宽为a的狭缝。在距离为R处放置荧光屏,屏上衍射图样中央明条纹的宽度d等于【】A.B.\nC.D.答:【B】解:,,,,得4.称为电子的康普顿波长(为电子的静止质量,h为普朗克常数,c为真空中的光速),当电子的动能等于它的静止能量时,它的德布罗意波长λ=_______λ0答:[解]依题,则有,由电子的相对论动量与能量的关系:,得到,即得到,5.如果粒子位置的不确定量等于粒子的德布罗意波长,则粒子速度的不确定量一定_____________(大于/等于/小于)粒子的速度值。答:大于解:由不确定关系和德布罗意波长公式,得到,所以,所以速度与速度的不确定量的关系为6.反应堆中的热中子动能约为6.12×1012eV,计算这种热中子的德布罗意波长。解:热中子的动能与中子的静止能量之比为可见,,因此,必须考虑相对论效应。由动量与能量的关系,所以德布罗意波长为7.质量为的电子,由静止起被电势差U12=900V的电场加速,试计算德布罗意波的波长。(,普朗克常数)解:考虑相对论效应,由动量与能量的关系,得到:德布罗意波的波长为\n如果不考虑相对论时,,所以电子经100kV电场加速,可以不考虑相对论效应。8.氦氖激光器所发出的红光波长为,谱线宽度,问:当这种光子沿轴方向传播时,它的坐标的不确定量多大?解:由德布罗意公式,得到,再由不确定关系,得到其位置的不确定量为9.若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长比较大?答:电子。解:动能相同,静止质量小的动量小,相应的德布罗意波长大。作业211.已知粒子在一维无限深方势阱中运动,其波函数为,则粒子在处出现的概率密度为【】。A.B.C.D.答:【C】解:2.粒子在一维矩形无限深势阱中心,图21-1所示为粒子处于某一能态波函数的曲线。粒子出现概率最大位置为【】。A.B.C.D.答:【A】解:显然,这粒子处于的第2激发态的波函数,为正弦函数,的极大值出现在处。3.如果电子处于态,它的轨道角动量的大小为【】。A.B.C.D.E.\n答:【B】解:态,、,则轨道角动量为4.设描述微观粒子运动的归一化波函数为。(1)请写出的物理意义;(2)问:必须满足的标准条件和归一化条件是什么?归一化有什么意义?解:(1)粒子t时刻、在处出现的概率密度;(2)单值、有限、连续;,符合几率描述。5.氢原子处于主量子数的状态,其轨道角动量可能的取值分别为;对应的状态,氢原子的角动量在外磁场方向的投影可能取值分别为。答:0,,,;-3,-2,-1,0,1,2,3。解:,则,则轨道角动量的可能值为时,,则角动量在外磁场方向的投影可能值为6.一个电子被束缚在宽度的一维无限深方势阱中,分别计算n=1、3、100的能态电子的能量。解:一维无限深势阱,,,,7.设一维运动粒子的波函数为其中为大于零的常数。试确定归一化波函数的值。解:由归一化条件,,得,得,, 8.在宽度为的一维无限深方势阱中运动的粒子定态波函数为求:(1)主量子数的粒子出现概率密度最大的位置;(2)主量子数的粒子出现在范围内的概率。解:(1)时,波函数为\n,概率密度函数为当,为概率密度最大处,则在内,在和处概率密度最大。(2)时,(0,)区间粒子出现的概率作业221.氢原子光谱的巴耳末系中波长最大的谱线用表示,其次波长用表示,则两者的比值为【】A.B.C.D.答:【A】解:根据玻尔氢原子理论,巴尔末系光谱频率为,可见,当时,是最小频率:,最大波长为:当时,是次最小频率:,次最大波长为:2.处于第3激发态的氢原子跃迁回低能态时,可以发出的可见光谱线有【】条。A.3B.6C.1D.2答:【D】解:可见光是高能级向能级跃迁得到的巴尔末系。第3激发态是。由向的跃迁,共有两个:由后,再由即\n可见,谱线有两条。3.具有下列哪一能量的光子能被处于的能级的氢原子所吸收【】A.2.16eVB.2.40eVC.1.51eVD.1.89eV答:【D】解:光子的能量只有刚好等于氢原子某两个能级之差时,光子才能被吸收所以只有的光子能够被的能级的氢原子所吸收,氢原子吸收一个光子后,跃迁到()的能级上。4.欲使氢原子能发射巴耳末系中波长为的谱线,最少要给基态氢原子提供【】eV能量。(里德伯常数R=1.096776×107m-1)答:[解].由巴尔末公式可得,发射的谱线是从能级跃迁得到的,因此,氢原子至少应该被激发到()的能级上。所以要给基态氢原子提供的能量为:5.已知原子中下列电子的量子数,对每一个原子的能量进行测量,写出可能测到的波函数(即能量本征态)的数目:(1),,_______种(2),,_______种(3),_______种(4)_______种答:2,=3,=10,=8;解:(1),,,但还有两个值,即,所以有2种状态。(2),,,但还有个值,即,所以有3种状态。(3),,但还有个值,还有两个值,所以有10种状态。(4),则有2个值;有4个值:时,,时,;还有两个值,即总共有种状态。6.泡利不相容原来的内容是:[解]不可能有两个电子具有相同的;7.基态电子种的自的排列遵循________原理和___________原理。[解]泡利不相容原理和能量最小原理;8.试计算能够占据一个支壳层的最大电子数,并写出这些电子的和的值。[解]支壳层的角量子数是,则电子的磁量子数可取个,即;而自旋磁量子数可以取2个,即,所以能够占据一个支壳层的最大电子数为14。这些电子的分别为:,,,\n,,,。9.光子服从泡利不相容原理吗?[解]光子是玻色子,其自旋量子数为1,它不服从泡利不相容原理;只有费米子服从,如电子,质子和中子等,其自旋量子数为。作业231.原子自发辐射和受激辐射的特点分别是【】A.自发辐射出同频率的光不相干;受激辐射的光与入射光也不相干B.自发辐射出同频率的光是相干的;受激辐射的光与入射光也是相干的C.自发辐射出同频率的光是相干的;受激辐射的光与入射光不相干D.自发辐射出同频率的光不相干;受激辐射的光与入射光是相干的【D】2.激光全息照相技术主要是利用激光的哪个种优良的特性【】A.亮度高B.方向性好C.相关性好D.抗电磁干扰能力强【C】3.自发辐射是指_______________________________________.受激辐射是指___________________________________________.[解]自发辐射是指:无外界刺激,光自发地从高能级向低能级跃迁,自发辐射出的光是不相干的;受激辐射是指:有外界刺激的情况下,光从高能级向低能级跃迁,且辐射光和入射光子是相干的;4.粒子数反转是指___________________________________[解]粒子数反转是指:激光器的工作物质处于高能级中的粒子数超过处于低能级的粒子数;这样的粒子分布状态称为粒子数反转;5.要实现粒子数反转必须_________________________________[解]有激励能源使原子激发,另外工作物质还要有合适的亚稳态能级;6.普通光源的发光机制是________占优势,激光器发光是__________;要产生激光必须使激光器的工作物质中__________超过____________。这种分布状态称作____________[解]普通光源的发光机制是自发辐射占优势,激光器发光是受激辐射占优势;要产生激光,必须使激光器的工作物质中高能级的粒子数超过低能级的粒子数,这种分布状态称作粒子数反转7.激光器中光学谐振腔的作用是:(1)_____________________________(2)____________________________(3)__________________________[解](1)产生与维持光的振荡,使光得到加强,实现光放大;(2)使激光有极好的方向性;(3)使激光的单色性好。8.光和物质相互作用产生受激辐射时,辐射光和入射光具有完全相同的特性,这些特性是指_______________________________________[解]相位、频率、偏振状态和传播方向9.激光器按工作物质划分可以分成四类,他们是________;________;_______;________.\n[解]固体、气体、液体和半导体激光器作业241.与绝缘体比较,半导体能带结果的特点是【】A.最高能带是价带B.满带与空带间有较窄的禁带C.满带与空带相衔接D.满带与空带间有较宽的禁带【B】2.下述说法中正确的是【】A.n型半导体中杂质原子所形成的能级靠近空带底部,能级中的电子容易被激发到空带中,所以导电性能比本征半导体好得多。B.p型半导体的导电机制与掺杂质无关C.本征半导体是电子与空穴同时参与导电,而杂质半导体只有电子(或者空穴)导电,所以本征半导体的导电性能比杂质半导体好D.n型半导体的导电性能优于p型半导体,因为n型半导体是电子导电,而p型半导体是正离子导电。【A】3.图24-1是导体、半导体、绝缘体在低温状态下的能带结构图,其中属于半导体能带结构的是【】(D)(C)(B)(A)价带空带空带空带满带满带满带满带禁带禁带禁带禁带价带【B】4.从能带结构看,本征半导体的导电机制是_________导电,参杂后,p型半导体的杂质能级位于____________其特点_________________;n型半导体的杂质能级位于__________其特点____________________。[解]从能带结构来看,本征半导体的导电机制是本征激发到空带中的电子和余下的满带中的空穴导电;掺杂后,p型半导体的杂质能级位于价带上方附近,其特点是价带中的电子较容易激发到该受主能级上,从而在价带中形成空穴,产生空穴导电;n型半导体的杂质能级位于导带下方附近,其特点是杂质能级中的电子较容易激发到导带上,从而在导带中形成电子,产生电子导电。5.如果一能带中所有的能态都被电子填满,则称之为________;高能态的能带中没有电子,所以称为______________;价电子所在的能级分裂而成的能带称为_____________。[解]如果一能带中所有的能态都被电子填满,这能带称为满带;高能态的能带中没有电子,所以称为空带;价电子所在的能级分裂形成的能带称为价带。6.为什么杂质半导体的导电性能比本征半导体好?[解]本征半导体是电子和空穴两种载流子同时参予导电,满带和空带之间有禁带;而杂质半导体由于杂质原子提供的能级或靠近满带(p型半导体),或靠近空带(n型半导体),使得电子很容易被激发,或者满带中的电子激发到受主能级(p型半导体),或者施主能级上的电子激发到空带中(n型半导体),都会形成未满的导带,使得导电性能比本征半导体要好。
查看更多

相关文章

您可能关注的文档