- 2022-08-16 发布 |
- 37.5 KB |
- 62页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
大学物理讲座热学
大学物理讲座哈尔滨工程大学理学院物理教学中心孙秋华--热学热学\n教学要求:1.掌握压强和温度的微观意义。2.在微观方面,掌握能量按自由度均分原则,从而导出理想气体的内能公式。在宏观方面,掌握理想气体的内能只是温度的单值函数。理解真实气体的内能是温度和体积的状态函数。3.掌握气体分子速率的统计分布规律。着重利用分布函数能计算气体分子三种速率及其它的物理量。4.掌握内能、功和热量三者的意义。了解做功和传递热量对系统内能的变化是等效的,但其本质是有区别的。内能是状态的函数。而做功和传递热量则与过程有关。5.从普遍的能量转换和守恒定律掌握热力学第一定律及其理想气体各等值过程中的应用。会计算循环过程的效率。6.理解热力学第二定律时,掌握热力学第二定律的微观实质。\n一、基本概念1.平衡态和平衡过程平衡态:若系统与外界无能量交换,则系统的宏观性质不随时间改变,这样的状态称为平衡态。平衡过程:系统从一个状态不断地变化到另一个状态,我们称系统经历了一个过程。若其间所经历的所有中间状态都无限地接近平衡态,这个过程称为平衡过程。(准静态过程)2.理想气体的压强和温度(PV=RT)→P=nkT\n压强:所有分子每秒钟施于单位面积器壁的冲量。温度:标志物体内分子无规则运动的剧烈程度。3.内能:在一个系统内,所有分子的动能和分子间相互作用势能的总和称为系统的内能。4.理想气体的内能:所有分子的动能总和。\n7.定容摩尔热容量8.定压摩尔热容量9.摩尔热容比5.平均碰撞频率6.平均自由程:10.循环过程:热机效率:\n致冷系数:二、基本定律和定理1.麦克斯韦速率分布律:在平衡态下,当气体分子间的相互作用可以忽略时,分子分布在任一速率区间v~v+dv内的分子数占总分子数的比率为:11.熵\n分布函数三种速率2.能量均分定理:在温度为T的平衡态下,气体分子每个自由度的平均动能都相等,其大小等于。\n气体的种类自由度一个分子的平均平动动能一个分子的平均转动动能一个分子的平均动能单原子33/2kT03/2kT双原子53/2kT2/2kT5/2kT多原子63/2kT3/2kT6/2kT3.热力学第一定律:理想气体无摩擦的平衡过程\n热力学第一定律对理想气体五个过程的应用0绝热0等温等压0等容备注QAE过程直线讨论温度转换点、吸放热转换点\n4.热力学第二定律:开尔文表述:不可能从单一热源吸取热量,使之完全变成有用功而不产生其它影响。克劳修斯表述:热量不可能自动地从低温物体传向高温物体。热力学第二定律的统计意义:一个不受外界影响的“孤立系统”,其内部发生的过程,总是由概率小的状态向概率大的状态进行,由包含微观状态数少的状态向包含微观状态数多的状态进行。\n5.熵增加原理在孤立系统内发生的任意不可逆过程,总导致整个系统的熵的增加,系统的总熵只有在可逆过程中才是不变的。\n热学气体分子动理论热力学能量均分定理热力学第一定律热力学第二定律:两种表述\n三、典型例题Ⅰ利用气动理论,求相应物理量。例1、一容器内储有氧气,在压强为1.00105Pa和温度为27C°的条件下,试求:1)1m3中有多少个氧气分子;2)氧分子的质量;3)分子平均平动动能;4)分子的平均速率;5)分子平均碰撞频率;6)分子平均自由程。Mmol=3210-3kg,d=3.5610-10m\n解:已知:双原子p=1.00105Pa,T=300K求:;;;;;1)m32)kg3)J\n4)m/s5)s-1m6)\n例2、一定量的理想气体贮于某一容器中,温度为T,气体分子的质量为m.根据理想气体分子模型和统计假设,分子速度在x方向的速度平均值;在x方向的速度平方的平均值。解:\n例3、一容器内装有N1个单原子理想气体分子和N2个刚性双原子理想气体分子,当该系统处在温度为T的平衡态时,其内能为解:\n作业93.容积V=1m3的容器内混有N1=1.0×1025个氢气分子和N2=4.0×1025个氧气分子,混合气体的温度为400K,求:(1)气体分子的平动动能总和;(2)混合气体的压强.作业94.在容积为2.0×10-3m3的容器中,有内能为6.75×102J的刚性双原子分子理想气体。(1)求气体的压强;(2)若容器中分子总数为5.4×1022个,求分子的平均平动动能及气体的温度。\n例4、N个粒子,其速率分布如图所示(v>5时粒子数为零).(1)试用N与表示a的值.(2)试求速率在2─3间的粒子数.(3)试求粒子的方均根速率.Nf(v)ovv02v03v04v05v0a/32a/3aⅡ利用速率分布函数求相应物理量\n解:给出速率分布函数\n解:(1)利用速率分函数的归一条件(2)速率在2v0─3v0间的粒子数(3)\n\n\n例5、导体中自由电子的运动可看成类似于气体中分子的运动.设导体中共有N个自由电子,其中电子的最大速率为vm,电子速率在v~v+dv之间的概率为0≤v≤vmv>vm式中A为常数.(1)用N,vm定出常数A;(2)试求导体中N个自由电子的平均速率.\n解:(1)根据已知条件可知电子速率分布函数为0≤v≤vmv>vm根据速率分布函数的归一化条件有:解得\n(2)根据平均速率定义\n例6、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。其中曲线(a)是气分子的速率分布曲线;曲线(c)是气分子的速率分布曲线;氩、氦\n例7、在平衡状态下,已知理想气体分子的麦克斯韦速率分布函数为f(v)、分子质量为m、最概然速率为vp,试说明下列各式的物理意义:(1)(2)分布在vp~∞速率区间的分子数在总分子数中占的百分率。分子平动动能的平均值.\n作业95.速率分布函数的物理意义是什么?试说明下列各量的意义:(1)f(v)dv(2)Nf(v)dv(3)(4)(5)(6)\n作业96.图中,I、II两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试有图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处温度。\nⅢ热力学一些物理量的计算例8、有一绝热容器,用一隔板将容器分为两部分,其体积分别为V1和V2,V1内有N个分子的理想气体,V2为真空。若将隔板抽掉,试求:该过程的熵变。\n解:对绝热自由膨胀过程,由温度不变\n例9、定量的理想气体在p-V图中的等温线与绝热线交点处两线的斜率之比为0.714,求其定体摩尔热容.opVApAVA解:\n=20.8J.mol-1.K-1\n例10、摩尔的单原子分子理想气体,经历如图所示的过程。试求:(1)该过程的T-V关系;(2)在该过程中放热和吸热的区域及摩尔热容。opVV02V0p02p0ABⅣ利用热力学第一定律求一些物理量\n解:(1)该过程的过程方程\n(2)在此过程中任取一微小过程由热一律,可得该微小过程中所吸收的热量\n由上式可知,吸热和放热的区域为:由摩尔热容定义:\n例11(作业104)1mol单原子分子的理想气体,经历如图所示的可逆循环,联结ac两点的曲线Ⅲ的方程为,a点的温度为T0(1)试以T0,普适气体常量R表示Ⅰ、Ⅱ、Ⅲ过程中气体吸收的热量。(2)求此循环的效率。\n解:过程曲线如图。(1)1、ab为等容过程已知:=1mol,i=3T0求:Qab;Qbc;Qca;\n1、bc为等压过程利用ca过程方程:\n3、ca过程方程:\n(2)\n例12、一定量的氮气(视为理想气体)经历所示的循环,其中ab,cd,ef都是等温过程,温度分别为700K、400K和300K;bc,de,fa都是绝热过程。而Vb=4Va,Vd=2Vc试求循环的效率。abcdefVaVbVcVdVpT1=700KT2=400KT3=300K\n\n解:abcdefVaVbVcVdVpT1=700KT2=400KT3=300K\n利用过程方程:\nabcdefVaVbVcVdVpT1=700KT2=400KT3=300K\n\nabcdefVaVbVcVdVpg解:延长bc到与ef相交g\nabcdefVaVbVcVdVp\nabcdefVaVbVcVdVp\n例13、定容摩尔热容为CV常量的某理想气体。经历如图所示的两个循环过程A1A2A3A1和B1B2B3B1相应的循环效率为A和B。试比较A和B的大小。V1V2Vp0A1A2A3B1B2B3\n解:先计算A1A2A3A1循环过程的效率A1A2A3A1过程的方程\nA1A2A3A1循环过程的效率A1A2A3A1循环过程的效率与斜率无关,故应有\n作业97.64g氧气的温度由0°C升至50°C,(1)保持体积不变;(2)保持压强不变。在这两个过程中氧气各吸收了多少热量?各增加了多少内能?对外各作了多少功?作业98.一定量的某种理想气体,有状态a经b到达c.(如图,abc为一直线)求此过程中(1)气体对外作的功;(2)气体内能的增量;(3)气体吸收的热量.P(atm)V(l)123123abc\n99.设有一以理想气体为工作物质的热机循环,如图所示。(c-b)为绝热过程试证明:其效率为abcV2V1p2p2Vp\n100.1mol氮气作如图所示的可逆循环过程,其中ab和cd是绝热过程,bc和da为等容过程,已知V1=16.4升,V2=32.8升Pa=1atm,Pb=3.18atm,Pc=4atm,Pd=1.26atm,试求:(1)Ta=?Tb=?Tc=?Td=?(2)Ec=?(3)在一循环过程中氮气所作的净功A=?PVabcdV1V2PcPbPdPa\n作业101.1mol单原子分子理想气体的循环过程如T-V图所示,其中c点的温度为Tc=600K.试求:(1)ab、bc、ca各个过程系统吸收的热量;(2)经一循环系统所作的净功;(3)循环的效率.oV(10-3m)T(K)abc12\n作业102.试由热力学第二定律证明:在图P-V上两条绝热线永不相交。作业103.摩尔单原子分子的理想气体,在p-V图上由两条等容线和两条等压线构成循环过程,如图所示,已知状态a的温度为T1,状态c的温度为T3,状态b和状态d位于同一等温线上,试求:(1)状态b的温度;(2)循环过程的效率。abcdVp\n作业104.1mol单原子分子的理想气体,经历如图所示的可逆循环,联结ac两点的曲线Ⅲ的方程为,a点的温度为T0(1)试以T0,普适气体常量R表示Ⅰ、Ⅱ、Ⅲ过程中气体吸收的热量。(2)求此循环的效率。\n谢谢各位同学查看更多