- 2022-08-13 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
统计学模拟试卷
统计学原理计算题期末练习参考答卷一、次数分布表的编制:1、某生产车间40名工人日加工零件数(件)如下:30264241364440374335372545294331364934473343384232253046293438464339354048332728要求:(1)根据以上资料分成如下几组:25—30,30—35,35—40,40—45,45—50计算出各组的频数和频率,编制次数分布表。(2)根据整理表计算工人的平均日产零件数。解、(1)日加工零件数频数频率(%)25—30717.5030—35820.0035—40922.5040—451025.0045—50615.00合计40100.00(2)组中值x频数fxf27.57192.5032.58260.0037.59337.5042.510425.0047.56285.00合计401500.00所以工人的平均日产零件数:2、有27个工人看管机器台数如下:542434344243432644223453243试编制分配数列。解:工人看管机器台数工人数(频数)频率(%)2622.223725.9341140.74527.41613.70合计27100.0014\n二、平均指标、相对指标、变量指标的计算1.某车间有甲、乙两个生产小组,甲组平均每个工人的日产量为22件标准差为3.5件;乙组工人日产量资料如下:日产量(件)工人数(人)10——1213——1516——1819——2110203040计算乙组每个工人的平均日产量,并比较甲、乙两生产小组哪个组的日产量更有代表性?解:日产量(件)组中值x工人数fxfx10—1211101103639613—151420280912616—1817305100019—2120408009180合计10054702。又因为:即:>因此乙组的平均数更具代表性。2、某局15个企业99年某产品的单位成本资料如下:按单位产品成本分组(元/件)企业数(个)各组产量占总产量的比重(%)10—1212—1414—16276224038合计15100试计算该产品的平均单位产品成本。解:由于组距式分组,故采用组中值计算:=11×22%+13×40%+15×38%=2.42+5.2+5.7=13.32(元/件)14\n3、已知某局20个企业的有关统计资料如下:按计划完成百分比分组(%)企业数(个)实际产值(万元)90以下90—100100—110110以上45476857126184合计20435试计算产值的平均计划完成程度。解:计划完成程度=实际完成数/计划数实际完成数=68+57+126+184=435计划数=实际数/计划完成程度==80+60+120+160=420因此:计划完成程度=实际完成数/计划数=435/420=103.57%4、某厂三个车间一季度生产情况如下:车间计划完成百分比实际产量(件)单位产品成本(元/件)第一车间第二车间第三车间90%105%110%19831522015108根据以上资料计算:(1)一季度三个车间产量平均计划完成百分比。(2)一季度三个车间平均单位产品成本。解:(1)设计划完成百分比为x实际产量f单位产品成本y一季度三个车间产量平均计划完成百分比(2)一季度三个车间平均单位产品成本=总成本/总产量5、某公司下属50个企业,生产同种产品,某月对产品质量进行调查,得资料如下:合格率(%)企业数(个)合格品数量(件)70—8080—9090—100102515255005950034200合计50119200要求:计算该产品的平均合格率。14\n解:根据题意可得平均合格率=合格品数量/总产品数量三、叁数的区间估计1、对一批成品按重复抽样方法抽选100件,其中废品4件,当概率为95.45%(t=2)时,可否认为这批产品的废品率不超过6%?解:已知n=100F(t)=95.45%t=2=4所以p=/n=4/100=4%因此又即所以不能认为这批产品的废品率不超过6%2、某年级学生中按简单随机抽样方式(重复抽样)抽取50名学生,对“基础会计学”课的考试成绩进行检查,得知其平均分数为76.6分,样本标准差10分,试以95.45%的概率保证程度推断全年级学生考试成绩的区间范围。如果其它条件不变,将允许误差缩小一半,应抽多少名学生。解:已知n=50F(t)=95.45%t=2因为所以又如果其它条件不变,将允许误差缩小一半:则设应抽学生数为m根据=即应抽学生200名14\n3、在—批成品中按重复抽样方法抽取400件进行检查,结果有废品16件,当概率为0.9545(t=2)时,试估计这批成品废品率的区间范围.解:已知n=400F(t)=0.9545t=2因为p=/n=16/400=0.04所以又这批成品废品率的区间范围为4、某工厂有2000个工人,用简单随机不重复方法抽出100个工人作为样本,计算出平均工资560元,标准差32.45元。要求:(1)计算抽样平均误差;(2)以95.45%(t=2)的可靠性估计该厂工人的月平均工资区间。解:已知N=2000n=100=560=32.45(1)因为(2)工人的月平均工资区间为:所以560-3.08560+3.08556.92563.085、某乡有5000农户,按随机原则重复抽取100户调查,得平均每户年纯收入12000元,标准差2000元。要求:(1)以95%的概率(t=1.96)估计全乡平均每户年纯收入的区间。(2)以同样概率估计全乡农户年纯收入总额的区间范围。解:已知:N=5000,n=100,=12000,=2000,F(t)=95%即t=1.96求:(1)的区间估计,(2)N·的区间估计.因为===200,=t·=1.96×200=392所以-+1160812392.14\n(2)总额的区间范围为(-)·N·N(+)·N58040000·N61960000四、相关系数与回归方程的配合1、根据某公司10个企业生产性固定资产价值(x)和总产值(y)资料计算出如下数据:∑x=6525∑y=9801∑xy=7659156∑=5668539试建立总产值y依生产性固定资产x变化的直线回归方程.解:已知n=10,6525,=5668539,=9801,=7659156设回归方程为=a+bx则b===12640035/14109765=0.896a=-b=9801/10-0.896×6525/10=980.1-584.64=395.46所以:395.46+0.896x2、某企业上半年产品产量(x:千件)与单位成本(Y:元)计算资料如下:n=6,∑x=21,∑y=426,∑xy=1481.∑79.=10326要求(1)试计算产量与单位成本的相关系数(1)试配合回归方程,指出产量每增加1000件时,单位成本平均变动多少?解:已知趣n=6,21,=79,=426,=30270=1481(1)所以:r===-60/68.9=-0.87.(2)设回归方程为=a+bx则b===-60/33=-1.82a=-b=426/6+1.82×21/6=71+6.37=77.37所以:77.37-1.82x14\n3、为研究产品销售额与销售利润之间的关系,某公司对所属6家企业进行了调查,设产品销售额为x(万元),销售利润为y(万元)。调查资料经初步整理的计算,结果如下:∑x=225∑x2=9823∑y=13∑y2=36.7∑xy=593要求:(1)计算销售额与销售利润之间的相关系数。(1)配合销售利润对销售额的直线回归方程。解:已知趣n=6,225,=9823,=13,=36.7=593(1)所以:r===633/651.56=0.9715.(2)设回归方程为=a+bx则b===633/8313=0.076a=-b=13/6-0.076×225/6=2.17-2.85=-0.68所以:+0.076x4、根据某地区历年人均收入(元)与商品销售额(万元)资料计算的有关数据如下:(x代表人均收入,y代表销售额)n=9∑x=546∑y=260∑=34362∑xy=16918计算:(1)建立以商品销售额为因变量的直线回归方程,并解释回归系数的含义;(1)若1996年人均收入为500元,试推算该年商品销售额。解:已知趣n=9,546,=34362,=260,=16918(1)设回归方程为=a+bx则b===10302/11142=0.9246a=-b=260/9-0.9246×546/9=28.89-56.09=-27.2所以:-27.2+0.9246x(2)当x=500时则-27.2+0.9246×500=435.1(万元)14\n五、指数与因素分析1、某商场对两类商品的收购价格和收购额资料如下:商品种类收购额(万元)收购价格基期报告期基期报告期甲乙10020013024050615560试求收购价格总指数、收购额总指数,并利用指数体系计算收购量总指数。解:已知所以收购价格总指数==收购额总指数=根据指数体系收购量总指数==120.73%2、某厂生产的三种产品的有关资料如下:产品名称产量单位产品成本基期报告期基期报告期甲10001200108乙5000500044.5丙1500200087要求:(1)计算三种产品的单位成本总指数以及由于单位产品成本变动使总成本变动的绝对额;(2)计算三种产品产量总指数以及由于产量变动而使总成本变动的绝对额;(3)利用指数体系分析说明总成本(相对程度和绝对额)变动情况。解:产品名称产量单位产品成本甲1000120010810000960012000乙5000500044.5200002250020000丙1500200087120001400016000(1)三种产品的单位成本总指数14\n==由于单位产品成本变动使总成本变动的绝对额为-=46100-48000=-1900(1)三种产品产量总指数由于产量变动而使总成本变动的绝对额为(3)又因为总成本指数为总成本变动额为因为4100=-1900+6000即(-)+(又96.04%×114.29%=109.76%即3、某公司三种商品销售额及价格变动资料如下:商品名称商品销售额(万元),价格变动率(%)基期报告期ABC50020010006502001200+l-5+8计算三种商品的价格总指数和销售量总指数。解:已知基期总量报告期总量价格个体指数K根据条件可得:三种商品的价格总指数==又销售额总指数k==14\n所以根据指数体系==115.63%4、某商店三种商品的销售资料如下:商品名称销售额(万元)今年销售量比去年增长%基期报告期甲1501808乙2002405丙40045015试计算:(1)销售额指数及销售额增加绝对值。(5分)(1)销售量指数及由销售量变动而增加的销售额。(5分)解:已知基期总量报告期总量销售量个体指数K根据条件可得:销售额指数销售额增加绝对值为870-750=120(万元)销售量指数=销售量变动而增加的销售额(万元)5、某集团公司销售的三种商品的销售额及价格提高幅度资料如下:试求价格总指数和销售额总指数。商品种类单位商品销售额(万元)价格提高%基期报告期甲乙丙条件块1015201113222506、某公司销售的三种商品的销售额及价格变动资料如下:商品商品销售额(万元)价格增长(+)或名称基期报告期下降(一)(%)ABC20010050250100603—26试求三种商品的价格总指数以及由于价格变动而影响的商品销售额。14\n六、时间数列的水平指标与速度指标1、根据下表已有的数据资料,运用动态指标的相互关系,确定动态数列的发展水平和表中所缺的环比动态指标。年份总产值(万元)环比动态指标增长量发展速度(%)增长速度(%)增长1%的绝对值1981741————————1982591983115.619841985112.79.961986解:年份总产值(万元)环比动态指标增长量发展速度(%)增长速度(%)增长1%的绝对值1981741————————198280059107.967.967.411983925125115.615.68198499671107.77.79.2519851122.5126.5112.712.79.9619861238.5116110.310.311.2252、某企业1995-2000年产品产量资料如下年份199519961997199819992000产品产量(万吨)定基增长量(万吨)环比发展速度(%)200110314010593要求:(1)利用指标间的关系将表中所缺数字补齐;(1)计算该企业1995年至2000年这五年期间的产品产量的年平均增长量以及按水平法计算的年平均增长速度.解(1)年份199519961997199819992000产品产量(万吨)定基增长量(万吨)环比发展速度(%)200————220201102313110524040104252521052343493(2)年平均增长量=(万吨)14\n年平均增长速度=3、某工业企业资料如下:月份指标四月五月六月七月工业总产值(万元)180160200190月初工人数(人)600580620600试计算:(1)二季度月平均劳动生产率;(2)二季度平均劳动生产率。解:(1)二季度月平均劳动生产率==(万元/人)=3000元/人(2)二季度平均劳动生产率=总产值/平均工人数=540/600=0.9万元/人=9000元/人4、某商店1990年各月商品库存额资料如下:月份123456—78—101112平均库存额(万元)605548434050456068试计算上半年、下半年和全年的月平均商品库存额。(要求写出公式和计算过程,结果保留两位小数。)解:因为商品库存额是时点指标所以上半年的月平均商品库存额为:=由于下半年的时间间隔不等所以下半年的月平均商品库存额为:=全年的月平均商品库存额=14\n5、某工业企业的调查资料如下表,试运用动态指标的相互关系:(1)确定动态数列的发展水平和表中所缺的动态指标;(2)以1990年为基期,计算平均发展速度。(要求写出公式和计算过程)年份总产值定基动态指标(万元)增长量发展速度(%)增长速度(%)1990253——————1991241992116.7199326.51994147.3解(1)年份总产值定基动态指标(万元)增长量发展速度(%)增长速度(%)1990253——————199127724109.499.491992295.2542.25116.716.71993320.0567.05126.526.51994372.67119.67147.347.3(2)平均发展速度:七、长期趋势的直线测定1、某企业各年产品总成本资料如下表所示:年份总成本(万元)19861987198819891990257262268273278试用最小平方法配合直线趋势方程,并预测1992年的总成本。(要求列表计算所需数据资料,写出公式和计算过程,结果保留两位小数。)14\n年份t总成本y(万元)tty19861987198819891990257262268273278-2-101241014-514-2620273556合计01053解:设配合直线方程为:y=a+bta=b=所以配合直线方程为:y=267.6+5.3t1992年的总成本为(万元)2、某地区1996至2000年粮食产量资料如下:年份19961997199819992000产量(万吨)220232240256280要求:(1)用最小平方法配合直线趋势方程;(2)预测2001年该地区粮食产量。(写出公式、计算过程,结果保留1位小数)解:年份t19961997199819992000合计产量(万吨)y2202322402562801228t-2-101204101410ty-440-2320256560144(1)设配合直线方程为:y=a+bta=b=所以配合直线方程为:y=245.6+14.4t(2)预测2001年该地区粮食产量为y=245.6+14.4×3=288.8(万吨)14查看更多