统计学学习辅导

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

统计学学习辅导

第一章总论一、社会经济统计的研究对象1、统计的涵义  统计一词在不同的场合可以有不同的涵义。统计有时指统计工作,即统计实践活动,是对社会经济现象的数量方面进行搜集、整理和分析的全过程;统计有时指统计资料,即通过统计工作过程所取得各项数据资料和与之相关的其他实际资料;统计有时指统计科学,即关于认识客观现象数量特征和数量关系的原理原则和方式方法的科学。统计的三种涵义是密切联系的。统计工作和统计资料是统计活动和统计成果的关系,统计学和统计工作是理论和实践的关系。2、社会经济统计学的研究对象社会经济统计学的研究对象是社会经济现象总体的数量特征和数量关系,通过这些数量方面的研究反映社会经济现象发展变化的规律性。统计学和统计工作是理论和实践的关系,它们所要认识的研究对象是一致的。3.社会经济统计学研究对象的特点可概括为:   数量性;具体性;总体性;社会性;。(展开)二、统计工作过程及统计研究方法1、统计工作过程统计工作过程所包括的环节有统计设计、统计调查、统计整理、统计分析、统计资料的提供与开发。2、统计研究方法统计研究方法有大量观察法、统计分组法、综合指标法、统计模型法、归纳推断法。 三、国家统计的职能 国家统计兼有信息职能、咨询职能、监督职能等三种职能。四、统计学的几个基本概念及相互关系1、统计总体与总体单位统计总体是根据统计研究的任务目的所确定的研究事物的全体,是客观存在的具有共同性质的个体所构成的整体。\n构成统计总体的个体单位称总体单位。在一次特定范围、目的的统计研究中,统计总体与总体单位是不容混淆的,二者的含义是确切的,是包含与被包含的关系。但是随着统计研究任务、目的及范围的变化,统计总体和总体单位可以相互转化。 统计总体同时具有大量性、同质性、变异性等特点。大量性是指构成总体的总体单位数要足够的多,总体应由大量的总体单位所构成,大量性是对统计总体的基本要求;同质性是指总体中各单位至少有一个或一个以上不变标志,即至少有一个具有某一共同标志表现的标志,使它们可以结合起来构成总体,同质性是构成统计总体的前提条件;变异性就是指总体中各单位至少有一个或一个以上变异标志,即至少有一个不同标志表现的标志,作为所要研究问题的对象。变异性是统计研究的重点。2、标志与标志表现 标志是说明总体单位所共同具有的属性和特征的名称。标志有品质标志和数量标志之分。品质标志说明总体单位的属性特征,无法量化,如职工的性别、文化程度,企业的经济成份,产品品牌等。数量标志说明总体单位的数量特征,能够量化,如职工的工龄、工资水平,企业的职工数、总产值、总产量、劳动生产率等。总体单位与统计标志是有区别的。总体单位是统计标志的直接承担者,是载体;统计标志依附于总体单位并说明总体单位的属性和特征。依附于某个总体单位的标志可以有多个。标志表现即标志特征在各单位的具体表现。如果说标志是统计所要调查的项目,那么标志表现是调查所得结果,标志的实际体现。标志表现有品质标志表现和数量标志表现之分。品质标志表现只能用文字表述,因此不能转化为统计指标,但对其对应的单位进行总计时就形成统计指标。数量标志表现是一具体数值,也称标志值。就一个品质标志或数量标志而言,其具体表现可能多种多样,不能将标志与标志表现混为一谈。如对三个工人的月工资计算平均数,只能说是对三个标志表现或三个标志值(变量值)计算平均数,不能说对三个数量标志计算平均数,因为数量标志只有一个,即工人“月工资”。3、变异与变量如果某一标志的具体表现在总体各单位相同,则称该标志为不变标志;如果某一标志的具体表现在各单位不尽相同,则称该标志为可变标志。可变标志的标志表现由一种状态变到另一种状态,统计上把这种现象或过程称变异。变异是一种普遍现象,有变异才有必要进行统计。变异有属性变异和数量变异之分。属性变异表明质的差别,数量变异表明量的差别。不变的数量标志称常量或参数。\n可变的数量标志和所有的统计指标称变量。变量的数值表现称变量值,即标志值或指标值。变量按其数值是否连续可分为连续性变量和离散性变量。连续性变量的数值是连续不断的,任意两个变量值之间可以做无数种分割,如工业总产值、商品销售额、身高、体重等,既可用小数表示,也可用整数表示;离散变量的取值可以按一定次序一一列举,如工厂数、工人数、机器台数等,变量值通常用整数表示。4、统计指标和指标体系统计指标是反映社会经济现象总体综合数量特征的科学概念或范畴。正确理解统计指标时应注意:①统计指标反映现象总体的数量特征;②一个完整的统计指标应该由总体范围、时间、地点、指标数值和数值单位等内容构成。统计指标和统计标志是一对既有明显区别又有密切联系的概念。二者的主要区别是:①指标是说明总体特征的,标志是说明总体单位特征的;②指标具有可量性,无论是数量指标还是质量指标,都能用数值表示,而标志不一定。数量标志具有可量性,品质标志不具有可量性。标志和指标的主要联系表现在:①指标值往往由数量标志值汇总而来;②在一定条件下,数量标志和指标存在着变换关系。统计指标按其反映的数量特点不同可分为数量指标和质量指标。数量指标是反映现象总规模水平或工作总量的指标,也称总量指标,一般通过数量标志值直接汇总而来,用绝对数表示,指标数值均有单位;质量指标是反映现象总体相对水平或工作质量的统计指标,又分为相对指标和平均指标,分别用相对数和平均数表示,它们通常是由两个总量指标对比派生出来的,反映现象之间内在联系和对比关系。    数量指标和质量指标的关系表现在:数量指标是计算质量指标的基础,质量指标往往是相应的数量指标进行对比的结果。统计指标体系是各种互相联系的指标群构成的整体,用以说明所研究的社会经济现象各方面互相依从和互相制约的关系。一个指标的作用总是有限的,它只能反映现象总体的某一侧面,只有使用指标体系才能反映现象总体全貌。统计指标体系大体上可分为基本统计指标体系和专题统计指标体系两大类。             第二章 统计调查\n一、统计调查的基本任务和要求1、统计调查统计调查是按照预定的统计任务,运用科学的方法,有组织有计划地向客观实际搜集资料的过程。统计调查既是对现象总体认识的开始,也是进行资料整理和分析的基础环节。2、统计调查的基本任务统计调查既是对现象总体认识的开始,也是进行资料整理和分析的基础环节。统计调查的基本任务是取得反映社会经济现象总体全部或部分单位以数字资料为主体的信息。3、统计调查的基本要求统计调查的基本要求是准确性、及时性和完整性,是衡量统计工作质量的重要标志。二、统计调查方案统计调查方案是调查工作有计划、有组织、有系统进行的保证。统计调查方案应确定的内容有:调查目的、调查对象、调查项目、调查表、调查时间和调查时限、调查的组织工作。1、调查目的确定调查目的是任何一项统计调查方案首先要解决的问题。不同的调查目的需要不同的调查资料,不同的调查资料又有不同的搜集方法。调查目的明确了,搜集资料的范围和方法也就确定下来了。2、调查对象   调查对象即统计总体,是根据调查目的所确定的研究事物的全体。统计总体这一概念在统计调查阶段称调查对象。在确定调查对象时,还必须确定调查单位和报告单位。调查单位也就是总体单位,它是调查对象的组成要素,即调查对象所包含的具体单位。调查对象和调查单位的概念不是固定不变的,随着调查目的的不同二者可以互相变换。报告单位也称填报单位,也是调查对象的组成要素。它是提交调查资料的单位,一般是基层企事业组织。   调查单位是调查资料的直接承担者,报告单位是调查资料的提交者,二者有时一致,有时不一致。如工业企业生产经营情况调查,每一工业企业既是调查单位,又是报告单位;工业企业职工收入状况调查,每一职工是调查单位,每一工业企业是报告单位。3、调查项目   调查项目即依附于调查单位(总体单位)的统计标志,其标志表现就是统计调查所得的资料。确定调查项目时,首先应注意所选择的项目能够取得确切资料,其次注意所选择的项目应有确切的涵义和统一解释,另外要注意各项目之间的联系和衔接,便于核对和分析。\n4、调查表调查表是用来表现调查项目的表格,其目的是保证统计资料的规范化和标准化。调查表有单一表和一览表两种形式。单一表是一个调查单位填写一份表格,可以容纳较多的项目。一览表是许多调查单位共同填写一份表格,在调查项目不多时较为简便,且便于合计和核对差错。为了正确填写调查表,须附有填表说明和项目解释。5、调查时间和时限调查时间指调查资料所属时间。如果调查的是时期现象,调查时间是资料所反映的起讫时间;如果调查的是时点现象,调查时间是统一规定的标准时点。调查时限是进行调查工作的期限,包括搜集资料和报送资料的整个工作所需要的时间。如某管理局要求所属企业在1996年1月底上报95年工业总产值资料,则调查时间是一年,调查时限是一个月;又如某管理局要求所属企业在96年1月10日上报95年产成品库存资料,则调查时间是标准时间1995年12月31日,调查期限是10天。6、调查的组织工作 调查的组织工作包括明确调查机构、调查地点、选择调查的组织形式等问题。三、统计调查的种类 1、统计调查按组织形式,可分为统计报表和专门调查。统计报表是国家统计系统和专业部门为了定期取得系统、全面的统计资料而采用的一种搜集资料的方式,目的在于掌握经常变动的、对国民经济有重大意义的指标的统计资料。专门调查是为了了解和研究某种情况或问题而专门组织的统计调查,包括抽样调查、普查、重点调查和典型调查等几种调查方法。2、统计调查按研究总体的范围,可分为全面调查和非全面调查。全面调查是对构成调查对象的所有单位进行逐一的、无一遗漏的调查,包括全面统计报表和普查;非全面调查是对调查对象中的一部分单位进行调查,包括非全面统计报表、抽样调查、重点调查和典型调查。3、统计调查按调查登记的时间是否连续,分为连续调查和非连续调查。连续调查是指对研究对象的变化进行连续不断的登记,如工业企业总产值、产品产量、原材料消耗量等,在观察期内连续登记。连续调查所得资料是现象在一段时间内的总量。不连续调查是指间隔一段相当长的时间对研究对象某一时刻的资料进行登记。如人口数、机器设备台数等资料短期内变化不大,没有必要连续登记资料。不连续调查所得资料体现现象在某一瞬间所具有的水平。4、统计调查按搜集资料的方法分为直接调查、凭证调查、派员调查、问卷调查。直接调查又称直接观察,由调查人员到现场对调查单位直接查看、测量和计量;凭证调查是以各种原始和核算凭证为调查资料来源,依照统一的表格形式和要求,按照隶属关系,逐级向有关部门提供资料的方法;采访调查是通过指派调查员对被调查者询问、采访,提出所要了解的问题,借以搜集资料;问卷调查是以问卷形式提问。此外,也有人根据调查工作时间的周期长短,将统计调查划分为经常性调查和一次性调查。所谓经常性调查是指调查周期在一年以内的调查,间隔超过一年的为一次性调查。这种划分和调查对象没有关系,不要把经常性调查误以为是全面调查,也不要误以为经常性调查就是调查时期现象,而一次性调查就是调查时点现象。四、统计调查的组织形式\n常用的统计调查有统计报表、普查、抽样调查、重点调查、典型调查等,它们各有其特点。1994年全国统计工作会议提出要建立以必要的周期性普查为基础,经常性的抽样调查为主体,同时辅之以重点调查、科学推算和少量的全面报表综合运用的统计调查方法体系。1、统计报表统计报表是按国家统一规定的表式,统一的指标项目,统一的报送时间,自下而上逐级定期提供基本统计资料的调查方式方法。我国大多数统计报表要求调查对象全部单位填报,属于全面调查范畴,所以又称全面统计报表。统计报表具有统一性、全面性、周期性、可靠性等特点。目前我国统计报表,是由国家统计报表、业务部门统计报表和地方统计报表组成,其中国家统计报表是统计报表体系的基本部分。2、普查普查是专门组织的不连续性全面调查。主要调查一定时点状况的社会经济现象的总量,搜集那些不能够或者不适宜用定期全面报表搜集的统计资料,以搞清重要的国情国力。普查的主要特点是不连续调查。普查的组织形式有两种:一是组织专门的普查机构,配备一定数量的普查人员,对调查单位直接进行登记;另一种是利用普查单位的原始记录和核算资料,颁发一定的调查表格由调查单位自填上报。普查按资料汇总的特点分为一般普查和快速普查。前者逐级上报资料,后者越过中间环节,由基层单位将资料直接报送给最高领导机关。   普查和全面统计报表都属于全面调查,但二者并不能互相代替。普查属于不连续调查,调查内容主要是反映国情国力方面的基本统计资料;而全面统计报表属于连续调查,调查内容主要是需要经常掌握的各种统计资料。全面统计报表要经常填报,因此报表内容固定,调查项目较少;而普查是专门组织的一次性调查,在调查时可以包括更多的单位、分组更细、项目更多。因此,有些社会经济现象不可能也不需要进行经常调查,但又需要掌握比较全面、详细的资料时,就可通过普查来解决。普查花费的人力、物力和时间较多,不宜经常组织,取得经常性的统计资料还需要靠全面统计报表。3、抽样调查抽样调查是按随机原则从总体中选取一部分单位进行观察,用以推算总体数量的一种非全面调查。抽样调查的特点:①既是非全面调查,又要达到对总体数量特征的认识;②按随机原则去抽取调查单位。抽样调查具有经济性、时效性、准确性、灵活性等特点。抽样调查的作用:一是能够解决全面调查无法或难以解决的问题;二是可以补充和订正全面调查的结果,三是可用于生产过程中产品质量的检查和控制,四是可用于对总体的某种假设进行检验。   抽样调查是非全面调查中最完善、最有科学根据的方式方法。抽样调查的基本形式有简单随机抽样、类型随机抽样、等距抽样、整群抽样。4、重点调查重点调查是专门组织的一种非全面调查,它是对所要调查的全部单位选择一部份重点单位进行调查。重点调查的关键是选择好重点单位。所谓重点单位,是从标志量的方面而言的,尽管这些单位在全部单位中只是一部分,但这些单位的某一主要标志量占总体单位标志总量的绝大比重。对这些单位进行调查,就可以了解调查对象的基本情况。\n重点调查中重点单位的选择着眼于标志量的比重,因而重点单位的选择具有客观性。当调查目的是掌握现象的基本情况,而部分单位又能比较集中地反映所研究的项目和指标时,可用重点调查。重点调查可以定期进行,也可以不定期进行,重点调查实际上是范围比较小的全面调查,它的目的是反映现象总体的基本情况。抽样调查和重点调查都是专门组织的非全面调查,具有调查单位少,省时省力的特点,在选取调查单位时不受主观因素的影响。但二者之间有明显的区别:首先是调查单位的意义和取得方式不同,重点调查是选择为数不多但标志量占总体标志总量绝大比重的单位进行调查;抽样调查中的样本单位是按照随机原则从研究总体中抽取的、具有较高代表性。其次,二者研究目的不同。重点调查是为了了解现象总体的基本情况,但不能推断总体总量;抽样调查的目的在于以样本量来推断总体总量。再次,适用场合不同。重点调查适用于部分单位能比较集中地反映所研究的项目或指标的场合;抽样调查最适合于不能或很难进行全面调查,而又需要全面数值的场合,在能进行全面调查的场合也有独到的作用。5、典型调查典型调查是根据调查的任务目的,对所研究的现象总体进行初步分析的基础上,有意识的选择若干具有代表性的单位进行调查,借以认识事物发展变化的规律。   典型调查的特点一是深入细致的调查,既可以搜集数字资料,又可以搜集不能用数字反映的实际情况;二是调查单位是有意识的选择出来的若干有代表性的单位,它更多地取决于调查者的主观判断和决策。典型调查和重点调查相比,前者调查单位的选择取决于调查者的主观判断,后者调查单位的选择具有客观性;前者在一定条件下可以用典型单位的量推断总体总量,后者不具备用重点单位的量推断总体总量的条件。典型调查在做总体数量上的推断时无法估计误差,推断结果只是一个近似值。抽样调查和重点调查、典型调查的根本区别就在于选取调查单位的方法不同。五、各种调查方式的结合运用      不同的统计调查的方式方法,各有其特点和作用。在实际工作中,并非单用一种方式方法,而是多种方式方法的结合运用。这是因为:①国民经济和社会发展情况复杂,国民经济门类众多,必须应用多种多样的统计调查方法,才能搜集到丰富的统计资料;②任何一种统计调查方法,都有它的优越性与局限性,各有不同的实施条件,只用一种统计调查方法,不能满足多种需要。                  第三章  统计整理一、统计整理的概念和内容1、统计整理根据统计研究的任务与要求,对统计调查所搜集到的原始资料进行分组、汇总,使其条理化、系统化的工作过程称统计整理。统计整理包括对原始资料和次级资料的整理。统计整理是统计调查的继续,是统计分析的前提和基础,在整个统计工作中发挥着承上启下的作用。\n2、统计整理的意义通过统计调查所取得的总体各单位的资料是零星的,分散的,只能说明总体单位的情况,而不能反映总体特征。统计整理对调查资料进行科学加工,使之系统化,成为说明总体特征的综合资料,实现了由反映总体单位特征的标志向反映总体综合数量特征的统计指标的转化,是从对社会经济现象个体量的观察到对社会经济现象总体量的认识的连接点,是人们对社会经济现象从感性认识到理性认识的过渡阶段。统计整理在整个统计工作中发挥着承上启下的作用。3、统计整理的方法统计整理的方法是分组、汇总和编表。分组是根据研究任务的要求,对调查所得的原始资料,确定哪些分组或分类。统计分组是统计整理的关键。汇总是在统计分组的基础上,把总体单位各种标志的标志值汇总起来,汇总主要有手工汇总和电子计算机汇总。   编表是把汇总的资料按一定的规则在表格上表现出来。4、统计整理的内容和步骤(1)确定应整理的指标和确定应分的组;(2)对各项指标进行汇总,确定各组和总体的单位数和标志总量;(3)用统计表现分组、汇总的结果。二、统计分组 1、统计分组的意义根据统计研究任务的要求和研究现象总体的内在特点,把现象总体按某一标志划分为若干性质不同但又有联系的几个部分称统计分组。总体的变异性是统计分组的客观依据。统计分组是总体内进行的一种定性分类,它把总体划分为一个个性质不同的范围更小的总体。2、统计分组的种类①统计分组按其任务和作用不同,分为类型分组、结构分组和分析分组。类型分组的目的是划分经济类型,结构分类的目的是研究同质总体的构成,分析分组的目的是研究现象总体内部诸标志间的依从和制约关系。②统计分组按分组标志的多少分为简单分组和复合分组。简单分组是将总体按一个标志进行分组,复合分组是将总体按两个或两个以上的标志重叠起来进行分组。③统计分组按分组标志的性质分为品质分组和变量分组。品质分组是将总体按品质标志进行分组,如企业按经济成份、地理位置分组,职工按性别、文化程度分组等;变量分组是将总体按数量标志进行分组,如企业按职工人数、劳动生产率分组,职工按工龄、工资分组等。3、分组体系与分组标志的选择①分组体系\n统计分组后所形成的一系列互相联系、互相补充的组的整体称分组体系。分组体系有平行分组体系和复合分组体系两种。平行分组体系是选择两个或两个以上的标志对总体进行一次次简单分组后所形成的体系;复合分组体系就是复合分组后形成的体系。②分组标志的选择分组标志的选择是统计分组的关键。分组标志,即将同质总体区分为不同组的标准或依据。分组标志一旦选定,就必然突出了总体在该标志下的性质差别,其他的差别看不见了。分组标志选择不当,不但无法显示现象的根本特征,甚至会混淆事物的性质,歪曲社会经济的真实情况。正确选择分组标志,必须根据统计研究的任务目的,抓住反映现象本质区别和内在联系的标志作为分组标志。统计分组的关键问题是正确选择分组标志和合理确定分组界限。4、统计分组的方法(1)品质标志分组方法品质标志分组一般较简单,分组标志一旦确定,组数、组名、组与组之间的界限也就确定。有些复杂的品质标志分组可根据统一规定的划分标准和分类目录进行。(2)数量标质分组方法按数量标志分组的目的并不是单纯确定各组在数量上的差别,而是要通过数量上的变化来区分各组的不同类型和性质。数量标志分组方法从以下几个方面来说明:①单项式分组和组距式分组对离散变量,如果变量值的变动幅度小,就可以一个变量值对应一组,称单项式分组。如居民家庭按儿童数或人口数分组,均可采用单项式分组。离散变量如果变量值的变动幅度很大,变量值的个数很多,则把整个变量值依次划分为几个区间,各个变量值则按其大小确定所归并的区间,区间的距离称为组距,这样的分组称为组距式分组。也就是说,离散变量根据情况既可用单项式分组,也可用组距式分组。在组距式分组中,相邻组既可以有确定的上下限,也可将相邻组的组限重叠。连续变量由于不能一一列举其变量值,只能采用组距式的分组方式,且相邻的组限必须重叠。如以总产值、商品销售额、劳动生产率、工资等为标志进行分组,就只能是相邻组限重叠的组距式分组。在相邻组组限重叠的组距式分组中,若某单位的标志值正好等于相邻两组的上下限的数值时,一般把此值归并到作为下限的那一组(适用于连续变量和离散变量)。组距式分组使资料的真实性受到一定程度的损害。组距式分组的假定条件是:变量在各组内的分布都是均匀的(即各组标志值呈线性变化)。通过组距式分组以后,把各组内部各单位的次要差异抽象去了,而把各组之间的主要差异突出出来,这样,各组分配的规律性可以更容易显示出来。根据这个道理,如组距太小,分组过细,容易将属于同类的单位划分到不同的组,因而显示不出现象类型的特点;但如果组距太大,组数太少,会把不同性质的单位归并到同一组中,失去区分事物的界限,达不到正确反映客观事实的目的。因此,组距的大小、组数的确定应根据研究对象的经济内容和标志值的分散程度等因素,不可强求一致。②等距分组和不等距分组   等距分组是各组保持相等的组距,也就是说各组标志值的变动都限于相同的范围。不等距分组即各组组距不相等的分组。    \n统计分组时采用等距分组还是不等距分组,取决于研究对象的性质特点。在标志值变动比较均匀的情况下宜采用等距分组。等距分组便于各组单位数和标志值直接比较,也便于计算各项综合指标。在标志值变动很不均匀的情况下宜采用不等距分组。不等距分组有时更能说明现象的本质特征。③组限和组中值 组距两端的数值称组限。其中,每组的起点数值称为下限,每组的终点数值称为上限。上限和下限的差称组距,表示各组标志值变动的范围。各组标志值的平均数,各组标志数的平均数在统计分组后很难计算出来,就常以组中值近似代替。组中值仅存在于组距式分组数列中,单项式分组中不存在组中值。组中值的计算是有假定条件的,即假定各组标志值的变化是均匀的(与组距式分组的假定条件相同)。一般情况下,组中值=(上限+下限)÷2   对于第一组是“多少以下”,最后一组是“多少以上”的开口组,组中值的计算可参照邻组的组距来决定。即:缺下限开口组组中值=上限—1/2邻组组距,缺上限开口组组中值=下限+1/2邻组组距。三、次数分布(分配数列)1、分配数列的概念、构成要素在统计分组的基础上,列出各组对应的单位数,形成总体单位数在各个组的分布,称次数分布,又称分配数列或次数分布。分配数列包括两个要素:总体按某标志所分的组和各组对应的单位数(频数)2、分配数列的类型   分配数列包括品质分配数列和变量分配数列,分别由品质标志分组和数量标志分组形成。变量数列又有单项式数列和组距式数列,分别由单项式分组和组距式分组形成。3、频数和频率   统计分组后各组对应的单位数称频数,也叫次数;各组单位数占总体单位总数的比重称频率。各组的频率大于0,所有组的频率总和等于1。在变量分配数列中,频数(频率)表明对应组标志值的作用程度。频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。组距数列中,影响各组次数分布的要素是组数、组距、组限和组中值。   有时为了更简便地概括总体各单位的分布特征,还需要编制累计频数数列和累计频率数列。累计有向上累计和向下累计的方法。向上累计是指将各组频数和频率由变量值低的组向变量值高的组累计,表明在这些数值以下所有数值所占的比重;向下累计是指将各组频数和频率由变量值高的组向变量值低的组累计,表明在这些数值以上所有数值所占的比重。4、次数分布特征   现象总体的性质不同,其次数分布也不同。归纳起来主要有四种类型:①钟型分布 特征是“两头大,中间小”,即靠近中间的变量值分布的次数多,靠近两边的变量分布次数少,形若古钟。②U型分布 其特征与钟型分布正相反,靠近中间的变量值分布的次数少,靠近两端的变量值分布次数多,形成“两头大,中间小”的U字型分布。如人口死亡现象按年龄分布便是如此。③J型分布  在社会经济现象中,一些统计总体分布曲线呈J型。④洛伦兹分布  洛伦兹曲线专门用以检定社会收入分配的平等程度。洛伦兹曲线拓展可运用于其他社会经济现象,研究总体各单位标志分布集中状况或平均性。洛伦兹曲线又称集中曲线,其运作的条件是:现象总体各组频率与相应的各组标志总量的比重。5、变量分配数列编制的步骤\n①将原始资料按其数值大小重新排列   只有把得到的原始资料按其数值大小重新排列顺序,才能看出变量分布的集中趋势和特点,为确定全距、组距和组数作准备。②确定全距   全距是变量值中最大值和最小值的差数。确定全距,主要是确定变量值的变动范围和变动幅度。如果是变动幅度不大的离散变量,即可编制单项式变量数列,如果是变量幅度较大的离散变量或者是连续变量,就要编制组距式变量数列。③确定组距和组数   前面已经介绍过组距数列有等距和不等距之分,应视研究对象的特点和研究目的而定。组距的大小和组数的多少,是互为条件和互相制约的。当全距一定时,组距大,组数就少;组距小,组数就多。在实际应用中,组距应是整数,最好是5或10的整倍数。在确定组距时,必须考虑原始资料的分布状况和集中程度,注意组距的同质性,尤其是对带有根本性的质量界限,绝不能混淆,否则就失去分组的意义。在等距分组条件下,存在以下关系:组数=全距/组距④确定组限组限要根据变量的性质来确定。如果变量值相对集中,无特大或特小的极端数值时,则采用闭口式,使最小组和最大组也都有下限和上限;反之,如果变量值相对比较分散,则采用开口式,使最小组只有上限(用“XX以下”表示),最大组只有下限(用“XX以上表示)。如果是离散型变量,可根据具体情况采用不重叠组限或重叠组限的表示方法,而连续型变量则只能用重叠组限来表示。在采用闭口式时,应做到最小组的下限低于最小变量值,最大组的上限高于最大变量值,但不要过于悬殊。⑤编制变量数列经过统计分组,明确了全距、组距、组数和组限及组限表示方法以后,就可以把变量值归类排列,最后把各组单位数经综合后填入相应的各组次数栏中。四、统计表1、统计表的概念、构成统计表是纵横交叉的线条所绘制表现统计资料的一种表格形式。广义统计表包括统计工作各阶段所使用的一切表格。从形式上看,统计表是由总标题,横行标题、纵栏标题和指标数值四部分组成;从内容上看,统计表是由主词和宾词两部分构成。主词是统计表要说明的总体或总体分成的多个组,宾词是说明主词的统计指标。2、统计表的种类统计表根据主词是否分组及分组情况分为简单表、简单分组表和复合分组表;统计表按作用不同分为调查表、汇总表和分析表。\n统计学原理教学辅导(二)第四章 综合指标一、总量指标的概念、作用1、概念:总量指标是用绝对数形式反映一定时间、地点条件下事物总体所达到的总规模、总水平、工作总量及其增减总量的指标。习惯称为绝对数。总量指标在很多情况下的数值大小与总体范围大小有正向变化关系,即总体范围越大,总量指标数值越大。如:2000年我国国内生产总值为89,404亿元外汇储备为1,656亿美元完成税收总额为1,260亿元工业企业实现利润为4,262亿元这些都是总量指标,说明我国在2000年社会经济所达到的规模和绝对水平。2、作用:①是从总规模这一数量方面来认识社会经济现象总体。②是编制计划,进行经济管理,实行宏观调控的重要指标。③是计算其他统计分析指标的基础。二、总量指标的种类(一)总量指标按其反映的内容不同分:总体单位总量和总体标志总量1、总体单位总量:反映总体中所包括的总体单位总数的指标,说明总体本身的规模大小。如:工业企业数、在校学生总数2、总体标志总量:反映总体中各总体单位在某一数量标志上的标志值总和的指标。如:以工业企业为总体的工资总额,工业总产值、销售收入。必须注意,一个总量指标究竟是属于总体单位总量还是总体标志总量,并不是固定不变的,它随着研究目的的不同而不同。(二)总量指标按其反映的事物所处的时间状况不同分:时期指标和时点指标\n1、时期总量指标:(1)概念:反映事物总体在一段时期内发展变化的数量总和的总量指标,又称流量。如:2000年我国国内生产总值。(2)特点:①指标数值具有可加性②指标数值是连续计数取得③指标数值的大小与时间长短有关2、时点总量指标(1)概念:反映事物总体发展变化在某一时刻(瞬间)上所达到的总规模状况的总量指标,又称存量。如:2002年日照职业技术学院年末教职工人数(2)特点:①指标数值具有不可加性②指标数值是一次计数取得③指标数值的大小与时间间隔的长短无关(三)、总量指标按其使用的计量单位不同分:实物量指标、价值量指标和劳动量指标总量指标都有计量单位,用有名数形式表示。1、实物量指标:根据事物的属性和特点,采用自然物理计量单位时所得到的总量指标。如:人口数以人为单位、车床产量以台为单位、国土面积以平方公里为单位、发电量以千瓦小时为单位。实物单位主要有自然单位、度量衡单位、复合单位、标准实物单位等。2、价值量指标:以货币单位计算的社会财富和劳动成果的总量。具有广泛的综合性。如:2002年我国工业企业实现利润4,262亿元。3、劳动量总量指标:是指按照劳动时间表示的计量单位而得到的总量指标。如:工业生产企业用工时作为计量单位而统计的定额工时产量。三、总量指标计算的要求1、正确确定指标的含义与计算范围。2、计算实物总量指标时要注意现象的同类性。3、使用统一的计量单位。4、相对指标、平均指标结合运用。第二节相对指标一、相对指标的概念、意义及其表现形式1、概念:相对指标又称相对数,它是两个相互联系的现象数量的比率,用以反映现象的发展速度、结构、强度、普遍程度或比例关系。2、表现形式:有名数和无名数。①有名数是指用作对比的分子指标与分母指标的计量单位共同构成的复合单位。②无名数是指百分数、千分数、成数、倍数、系数等抽象化的计量形式。二、相对指标的种类及计算方法(一)相对指标的种类:按其计算方法不同分:计划完成相对指示、结构相对指标、比例相对指标、比较相对指标、强度相对指标和动态相对指标。(二)相对指标的计算方法1、结构相对指标:(1)概念:某一总体的某部分数值与该总体的总数值对比,反映总体内部构成情况的相对数。它是在统计分组的基础上计算的,一般用百分数表示。(2)计算公式:结构相对指标(%)=(总体中某部分数值/总体全部数值)×100%。如:某大学1998年新生中,男生1,273人,女生627人,其中,男生占全部新生的67%,女生占全部新生的37%。2、比例相对指标(1)概念:总体内部不同部分数量对比的相对指标,用以分析总体范围内各个局部、各个分组之间的比例关系和协调平衡状况。(2)计算公式:比例相对指标(%)=(总体中某一部分数值/总体中另一部部分数值)×100%。比例相对指标计算结果通常以百分比来表示,还有以比较基数单位为1、100、1000时被比较单位数是多少的形式来表示。如:某大学1998年新生中,男生1,273人,女生627人,性别比例指标为204%(以女生为100)或男生数与女生数之比为230:100\n3、比较相对指标(1)概念:用以说明某一同类现象在同一时间内不同空间条件下的数量对比关系,即不同单位的同类指标之比。计算比较相对指标时,分子、分母指标的涵义、口径、计算范围和计量单位必须一致,其数值通常用百分数或倍数表示。(2)计算公式:比较相对指标(%)=(甲地区(单位)某现象的指标数值/乙地区(单位)同一现象的指标数值)×100%如:某年北京市工业总产值为708.97亿元,上海市为1515.35亿元,上海市工业总产值为北京的2.14倍(1515.35:708.97)。4、强度相对指标(1)概念:是两个性质不同而有联系的总量指标之间的对比,它说明现象发展的强度、密度和普遍程度。(2)特点:不是同类现象指标的对比。这里所指的不同类现象可能分别属于不同的总体,也可能是同一总体中的不同标志或指标。(3)计算公式:强度相对指标=某种现象总量指标值/另一有联系而性质不同的现象总量指标数值如:1995年我国国内生产总值为57,494.9亿元,全国平均人口为120,485.5万人,则平均每人的国内生产总值为4,772元。强度相对指标以双重计量单位表示,是一种复名数。5、动态相对指标(1)概念:动态相对指标又称发展速度,表示同类事物在不同时期的数量对比。说明现象的发展变化情况。(2)计算公式:动态相对指标(%)=(报告期指标数值/基期指标数值)×100%动态相对指标可以利用总量指标计算,可以用平均指标计算(第五章详讲)6、计划完成程度相对指标(1)概念:简称计划完成相对数。是现象在某段时间内的实际完成数与计划任务数之比。用来检查、监督计划执行情况,借以观察计划完成程度。\n(2)计算公式:计划完成相对数(%)=(实际完成数/计划数)×100%如:某企业某年产品产量计划达到500吨,实际完成650吨,则:产量计划完成程度(%)=(650/500)×100%=130%计算结果表明,该企业超额完成产量计划任务30%,实际产量比计划产量增加了150吨。①计划任务数以绝对数形式出现时的计算方法。当计划任务数以绝对数形式出现时,检查其计划完成情况一般分为短期计划完成和长期计划完成(一般为5年)的检查两种。它用来考察社会经济现象规模或水平的计划完成情况。A、短期计划完成情况检查。可以有两种不同算法表示:其一是计划数与实际数是同期的。如:月实际数与月计划数对比,说明计划执行的结果。其二是计划期中某一段实际累计数与全期计划数对比,用以说明计划执行的进度如何,为下阶段工作安排做准备。计划完成程度(%)=(累计至本期止实际完成数/全期计划数)×100%B、长期计划完成情况检查。长期计划如5年计划,计划任务的规定有不同的方式。有的任务是按全期应完成的总数来规定的,如:“七·五”期间计划规定我国财政收入5年为11,194亿元。有的任务是按规定计划期末所应达到的水平,如“九·五”期间计划规定2000年我国粮食产量达到4.65亿吨。由此产生了两种不同的检查分析方法:累计法、水平法。累计法计算公式:计划完成相对数(%)=(计划期间实际完成累计数/计划期规定的累计数)×100%水平法计算公式:计划完成相对数(%)=(计划期末实际达到的水平/计划期规定的期末水平)×100%②计划任务数以相对数形式出现时计算方法。计划完成相对数=(本年实际水平/上年实际水平):(本年计划水平/上年实际水平)=实际为上年的百分数/计划为上年的百分数=本年实际水平/本年计划水平三、计算和应用相对指标的原则1、两个对比指标要有可比性;2、要与总量指标结合运用;3、各种相对指标结合运用。4、指标在不同的空间比较时,资料所属时期或时点也应该统一可比。第三节平均指标1、平均指标的概念、特点和种类平均指标又称统计平均数,用以反映社会经济现象总体各单位某一数量标志在一定时间、地点条件下所达到的一般水平的综合指标。平均指标的特点:(1)把总体各单位标志值的差异抽象化了;(2)平均指标是个代表值,代表总体各单位标志值的一般水平。平均指标的种类有:算术平均数、调和平均数、几何平均数、众数和中位数。前三种平均数是根据总体所有标志值计算的所以称为数值平均数,后两种平均数是根据标志值所处的位置确定的,因此称为位置平均数。平均指标的作用主要表现在:它可以反映总体各单位变量分量分布的集中趋势,可以用来比较同类现象在不同单位发展的一般水平;用来比较同一单位的同类指标在不同时期的发展状况;还可以用来分析现象之间的依存关系等相对指标数值的表现形式有有名数和无名数两种。强度相对指标与平均指标的区别主要表现在以下两点:(1)指标的含义不同。强度相对指标说明的是某一现象在另一现象中发展的强度、密度或普遍程度;而平均指标说明的是现象发展的一般水平。(2)计算方法不同。强度相对指标与平均指标,虽然都是两个有联系的总量指标之比,但是,强度相对指标分子与分母的联系,只表现为一种经济关系,而平均指标是在一个同质总体内标志总量和单位总量的比例关系。分子与分母的联系是一种内在的联系,即分子是分母(总体单位)所具有的标志,对比结果是对总体各单位某一标志值的平均。2、平均指标的计算\n(1)算术平均数的计算 算术平均数是计算平均指标的最常用方法,它的基本公式形式是总体标志总量除以总体单位总量。在实际工作中,由于资料的不同,算术平均数有两种计算形式:即简单算术平均数和加权算术平均数 或简单算术平均数适用于未分组的统计资料,如果已知各单位标志值和总体单位数,可采用简单算术平均数方法计算。加权算术平均数适用于分组的统计资料,如果已知各组的变量值和变量值出现的次数,则可采用加权算术平均数计算。在,公式中,各组次数具有权衡各组变量值轻重的作用,某一组的次数越大,则该组的变量值对平均数的影响就越大,反之越小。加权算术平均数的大小受两个因素的影响,其一是受变量值大小的影响。其二是受次数分配值即各组次数占总次数比重的影响。加权算术平均数中的权数,指的就是标志值出现的次数或各组次数占总次数的比重。在计算平均数时,由于出现次数多的标志值对平均数的形成影响大些,出现次数少的标志值对平均数的形成影响小些,因此就把次数称为权数。在分组数列的条件下,当各组标志值出现的次数或各组次数所占比重均相等时,权数就失去了权衡轻重的作用,这时用加权算术平均数计算的结果与用简单算术平均数计算的结果相同。(2)调和平均数的计算在实际工作中,有时由于缺乏总体的单位数资料,而不能直接计算平均数,这时就可采用调和平均数计算。因此在统计工作中,调和平均数常常被作为算术平均数的变形来使用。调和平均数也有简单调和平均数和加权调和平均数两种形式。例2、某月某企业按工人劳动生产率高低分组的生产班组数和产量资料如下:按工人劳动生产率分组(件/人)生产班组产量(件)50-6010825060-707650070-805525080-902255090以上11520     试计算该企业工人平均劳动生产率。解:列计算表如下:按工人劳动生产率分组(件/人)组中值产量件人数50-6055825015060-7065650010070-807552507080-908525503090以上95152016合计 24070366\n工人平均劳动生产率(件/人)注意本题计算中权数的选择。资料中“生产班组”可以是次数,但并不是合适的权数。因为本题中的工人劳动生产率是按件/人计算的,和生产班组没有直接关系,所以它不能作为权数进行平均数的计算。本题应以“产量”权数,进行加权调和平均数的计算。加权算术平均数与加权调和平均数是计算平均指标时常常用到的两个指标。加权算术平均数中的权数一般情况下是资料已经分组得出分配数列的情况下标志值的次数。而加权调和平均数的权数是直接给定的标志总量。在经济统计中,经常因为无法直接得到被平均标志值的相应次数的资料而采用调和平均数形式来计算,使调和平均数的计算结果与加权算术平均数的计算结果相同,所以在实际应用加权算术平均数时,需注意权数的选择。应用平均指标必须注意的问题有:⑴计算和应用平均指标,必须注意现象总体的同质性;⑵用组平均数补充说明总平均数;⑶计算和运用平均数时,要注意极端数值的影响,因为算术平均数受极端数值的影响很明显。(3)众数和中位数 众数和中位数是两个位置平均数,在一定条件下用它们反映变量数列的一般水平是非常有效的。众数是总体中出现次数最多的变量值。在单位数不多或一个无明显集中趋势的资料中,众数的测定没有意义。一般来讲,只有根据分组数列才能确定众数。中位数是将总体各单位标志值按大小顺序排列后,处于中间位置的那个数值。根据未分组资料和分组资料都可确定中位数。4、变异指标  变异指标又称标志变动度,它综合反映总体各个单位标志值的差异程度或离散程度。以平均指标为基础,结合运用变异指标是统计分析的一个重要方法。变异指标的作用有:反映现象总体总单位变量分布的离中趋势;说明平均指标的代表性程度;测定现象变动的均匀性或稳定性程度。从以上三点作用可以看出,变异指标总是和平均指标相结合,从另一个侧面说明总体的特征。(2)变异指标的种类和计算 变异指标包括以下几种:全距、平均差、标准差和变异系数。全距是测定标志变异程度的最简单的指标,它是标志的最大值和最小值之差,反映总体标志值的变动范围。用公式表示为:\n全距=最大标志值-最小标志值从计算可知,全距仅取决于两个极端数值,不能全面反映总体各单位标志值变异的程度,也不能拿来评价平均指标的代表性。平均差是各单位标志值对其算术平均数的离差绝对值的算术平均数,反映的是各标志值对其平均数的平均差异程度。其计算方法有简单和加权两种形式。标准差是总体中各单位标志值与算术平均数的离差平方的算术平均数的平方根,又称为均方差。它是测定标志变动程度的最主要的指标。标准差的实质与平均差基本相同,只是在数学处理方法上与平均差不同,平均差是用取绝对值的方法消除离差的正负号然后用算术平均的方法求出平均离差;而标准差是用平方的方法消除离差的正负号,然后对离差的平方计算算术平均数,并开方求出标准差。标准差的计算也有简单和加权两种形式,计算公式如下:σ=;σ=变异系数是以相对数形式表示的变异指标。它是通过变异指标中的全距、平均差或标准差与平均数对比得到的。常用的是标准差系数。变异系数的应用条件是:当所对比的两个数列的水平高低不同时,就不能采用全距、平均差或标准差进行对比分析,因为它们都是绝对指标,其数值的大小不仅受各单位标志值差异程度的影响,而且受到总体单位标志值本身水平高低的影响;为了对比分析不同水平的变量数列之间标志值的变异程度,就必须消除数列水平高低的影响,这时就要计算变异系数。变异系数反映的是单位平均水平下标志值的离散程度,因而通过计算变异系数为水平高低不同的两个数列提供了对比的基础。标准差系数的计算方法如下例3、两种不同水稻品种,分别在5个田块上试种,其产量如下:甲品种乙品种田块面积(亩)产量(公斤)田块面积(亩)产量(公斤)1.26001.58401.14951.47701.04451.25400.95401.05200.84200.9450\n要求:⑴分别计算两品种的单位面积产量。⑵计算两品种亩产量的标准差和标准差系数。⑶假定生产条件相同,确定哪一品种具有较大稳定性,宜于推广。解:甲品种乙品种Xfxfxfxf5001.2600——5601.58404024004501.1495-5027505501.47703012604451.0445-5530255201.0520——6000.954010090004501.2540-7058805250.8420255005000.9450-20360合计5.02500—15275合计6.03120—9900注:⑴⑵\n⑶因V乙0为正相关;r>0为负相关。⑶判别相关程度的方法及标准r=0为不相关,|r|<0.3为微弱相关,0.3<|r|<0.5为低度相关,0.5<|r|<0.8为显著相关,0.8<|r|<1为高度相关,r=1为完全正相关。r=-1为完全负相关。  3、相关系数的计算 利用相关系数的基本公式计算相当繁琐,但利用代数推演的方法可得到许多计算相关系数的简化式,如:  四、回归分析    1、回归分析的意义 回归分析是对具有相关关系的两个或两个以上变量之间数量变化的一般关系进行测定,确定一个相应的数学表达式,以便从一个已知量来推测另一个未知量,为估计预测提供一个重要的方法。2、回归与相关的区别与联系回归和相关都是研究两个变量相互关系的分析方法。相关分析研究两个变量之间相关的方向和相关的密切程度。但是相关分析不能指出两变量相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化关系。回归方程则是通过一定的数学方程来反映变量之间相互关系的具体形式,以便从一个已知量来推测另一个未知量。为估算预测提供一个重要的方法。\n相关分析既可以研究因果关系的现象也可以研究共变的现象,不必确定两变量中谁是自变量,谁是因变量。而回归分析是研究两变量具有因果关系的数学形式,因此必须事先确定变量中自变量与因变量的地位。计算相关系数的两变量是对等的,可以都是随机变量,各自接受随机因素的影响,改变两变量的地位并不影响相关系数的数值。在回归分析中因变量是随机的,自变量是可控制的解释变量,不是随机变量。因此回归分析只能用自变量来估计因变量,而不允许由因变量来推测自变量。回归分析和相关分析是互相补充、密切联系的。相关分析需要回归分析来表明现象数量相关的具体形式,而回归分析则应该建立在相关分析的基础上。依靠相关分析表明现象的数量变化具有密切相关,进行回归分析求其相关的具体形式才有意义。在相关程度很低的情况下,回归函数的表达式代表性就很差。  3、简单线性回归方程的建立 简单线性回归方程式为:             y=a+bx  式中:y是y的估计值,a代表直线在y轴上的截距,b表示直线的斜率,又称为回归系数。回归系数的涵义是,当自变量x每增加一个单位时,因变量y的平均增加值。当b的符号为正时,表示两个变量是正相关,当b的符号为负时,表示两个变量是负相关。a、b都是待定参数,可以用最小平方法求得。例如,某企业上半年产品产量与单位成本资料如下:        月 份 产 量(千件) 单位成本(元)         1   2        73      2  3        72      3   4        71      4   3        73      5   4        69      6   5       68  要求:(1)计算相关系数,说明两个变量相关的密切程度。     (2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少?      (3)假定产量为6000件时,单位成本为多少元?  解:计算相关系数时,两个变量都是随机变量,不须区分自变量和因变量。考虑到要配和合回归方程,所以这里设产量为自变量(x),单位成本为因变量(y)                    月 份 产量(千件)单位成本    xy       n   x   (元)y          1   2     73  4 5329 146     2   3     72  9 5184 216     3   4     71 16 5041 284     4   3     73  9 5329 219     5   4     69 16 4761 276     6   5     68 25 4624 340    合 计 21   426 79302681481  (1)计算相关系数\n说明产量和单位成本之间存在高度负相关。  (2)配合回归方程 y=a+bx =-1.82 =77.37  回归方程为:y=77.37-1.82x  (3)当产量为6000件时,即x=6,代入回归方程:     y=77.37-1.82×6=66.45(元)再如,根据某部门8个企业产品销售额和销售利润的资料得出以下计算结果:=189127=2969700=4290=12189.11=260.1要求:(1)计算产品销售额与利润额的相关关系;(2)建立以利润额为因变量的直线回归方程并说明回归系数的经济意义;(3)计算估计标准误差。解:(1)计算相关系数=0.9934(2)配合回归方程 y=a+bx =0.742 =-7.2773回归方程为:y=-7.2772+0.742x(3)估计标准误:=2.84934、估计标准误差分析 估计标准误差是衡量因变量的估计值与观测值之间的平均误差大小的指标。利用此指标可以说明回归方程的代表性。统计学原理教学辅导(四)第八章指数分析一、指数概念和指数的作用。\n指数有广义指数和狭义指数之分。广义指数指所有的相对数,即反映简单现象总体或复杂现象总体数量变动的相对数,狭义指数是指反映不能直接相加的复杂现象总体数量变动的相对数。狭义指数是指数分析的主要方面。按指数反映的对象范围不同,分为个体指数和总体指数。个体指数是反映个别现象(即简单现象总体)数量变动的相对数,总体指数是反映全部现象总体(即复杂现象总体)数量变动的相对数。总指数按其计算方法和计算公式的不同,分为综合指数和平均指数。指数按其反映的指标性质不同,分为数量指标指数和质量指标指数。对数量指标编制的反映现象总体数量变动程度的指数称数量指标指数;对质量指标编制的反映现象总体数量变动程度的指数称质量指标指数。二、综合指数的特点、编制以及计算。1.综合指数的概念 综合指数是总指数的一种形式。编制综合指数的目的在于测定由不同度量单位的许多商品或产品所组成的复杂现象总体数量方面的总动态。综合指数包括数量指标指数和质量指标指数。综合指数编制的特点是:(1)确定与指数化指标相联系的同度量因素;(2)对复杂现象总体所包括两个因素,把其中一个因素----同度量因素的时期加以固定,以便消除其变化,来测定我们所要研究的那个因素即指数化指标的变动。编制数量指标综合指数时,指数化指标是数量指标,以基期的质量指标作为同度量因素;编制质量指标综合数时,指数化指标是质量指标,以计算期的数量指标为同度量因素。2.综合指数的特点及同度量因素的确定。综合指数的编制方法是先综合后对比。即解决不同度量单位的问题,使得不能直接相加的现象变得可以相加,然后再进行对比分析。所以,综合指数的编制方法有两个特点:第一,编制综合指数要从现象之间的联系中,确定与所要研究的现象有关联的同度量因素;第二,将引进的同度量因素固定,以测定指数化因素的变动,从而解决对比问题。3.综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。(-)此差额说明由于数量指标的变动对价值量指标影响的绝对额。(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。(-)此差额说明由于质量指标的变动对价值量指标影响的绝对额。三、平均指数的概念、编制及计算。\n平均指数是总指数的另一种计算形式,有其独立应用意义。它可以是综合指数的变形,也可以是独立意义的平均指标指数。在得不到全面资料的情况下必须运用平均指数。平均指数是从个体指数出发来编制总指数的,计算形式为算术平均数指数和调和平均数指数。(1)加权算术平均指数的编制,是以基期总量为权数对个体数量指标指数进行加权算术平均,以此计算的加权平均数指数等于数量指标综合指数。加权算术平均数指数=上式中,K表示数量指标的个体指数,表示基期的某个总量指标。也就是说,要编制加权算术平均数指数,一要掌握数量指标个体指数,二要掌握基期总量。(2)加权调和平均数指数的编制,是以报告期总量为权数对个体质量指标指数进行加权调和平均,据此计算的加权平均数指数等于质量指标综合指数。加权调和平均数指数=上式中,K表示质量指标个体指数,表示报告期的某个总量指标。也就是说,要编制加权调和平均数指数,一要掌握质量指标个体指数,二要掌握报告期总量。在平均指数的应用中,平均指数和综合指数比较有两个重要特点:①综合指数主要适用于全面资料编制,而平均指数既可以依据全面资料编制,也可以依据非全面资料编制;②综合指数一般采用实际资料做权数编制,平均指数在编制时,除了用实际资料做权数外,也可以用估算的资料做权数。四、因素分析的内容。1.因素分析的定义因素分析是指从数量方面研究现象动态变动中受各种因素变动的影响程度。因素分析主要借助于指数体系来分析社会经济现象变动中各种因素变动发生作用的影响程度。在指数体系中,某个总量指标(称结果指标)是两个原因指标的乘积的条件下,通过建立相应的指数体系从绝对数和相对数两个方面对总量指标的变化进行因素分析。在指数体系中,指数之间的数量对等关系表现在两个方面:一是结果指数等于因素指数的乘积,二是结果指数的分子分母之差等于各因素指数分子分母之差的和。因素分析主要分析以下两个问题:(1)利用综合指数体系,分析社会经济现象总体总量指标的变动受各种因素变动的影响程度。(2)利用综合指数编制的方法原理,通过平均指标指数体系,分析社会经济现象总体平均指标变动受各种因素变动的影响程度。例如,总平均工资的变动受不同技术级别工人平均工资和受不同技术级别工人结构变动的影响程度,分析企业总平均劳动生产率变动受各个工人组劳动生产率变动和各工人组工人数结构变动的影响程度。2.因素分析的内容因素分析只能在具有乘积关系的指数体系中进行。因素分析的内容包括相对数分析和绝对数分析。相对数分析是指数体系间乘积关系的分析,指数分析一般就是指这种分析;绝对数分析是指指数体系中分子与分母差额关系的分析。\n3.因素分析的步骤计算被分析指标的总变动程度和绝对额;计算各因素指标变动影响程度和绝对额;影响因素的综合分析,总变动程度等于各因素变动程度之连乘积,总变动绝对额等于各因素变动影响绝对额之总和,4.利用指数体系进行因素分析的具体形式;复杂现象总体总量指标变动的因素分析相对数变动分析:=×绝对值变动分析:-=(-)×(-)例.1某厂生产的三种产品的有关资料如下:产品名称产量单位产品成本基期报告期基期报告期甲10001200108乙5000500044.5丙1500200087要求:(1)计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝对额;(2)计算三种产品产量总指数以及由于产量变动而使总成本变动的绝对额;(3)利用指数体系分析说明总成本(相对程度和绝对额)变动情况。解:(1)产品成本指数=由于单位产品成本变动使总成本使总成本变动的绝对额;(-)=461000-48000=-1900(万元)(2)产品产量总指数=由于产量变动而使总成本变动的绝对额:(-)=48000-42000=6000(万元)(3)总成本指数=-=46100-42000=4100(万元)指数体系:109.76%=96.04%×114.29%4100(万元)=-1900+6000\n分析说明:报告期总成本比基期增加了9.76%,增加的绝对额为4100万元.由于各种产品的单位产品成本平均降低了3.96%(甲、丙产品成本降低,乙产品成本提高),使总成本节约了1900万元;由于各种产品的产量增加了14.29%,使报告期的总成本比基期增加了6000万元。例2、某企业工人数及工资资料如表:工人数(人)工资水平(元)基期报告期基期报告期技术工40063016001700普通工600870800900要求:(1)、计算总平均工资指数。(2)、对总平均工资变动进行因素分析。例3、某商店三种商品的价格变动及销售额资料如下:商店销售额价格变动率(%)基期报告期甲52005300-15\n乙1030011500-10丙250022000分析三种商品销售额受销售量和价格的影响。(自己做)第九章动态数列分析一、动态数列的概念和种类动态数列又称时间数列,它是指某社会经济现象在不同时间上的一系列统计指标值按时间先后顺序加以排列后形成的数列。因此,动态数列由两部分构成,一部分是反映时间顺序变化的数列,一部分是反映各个指标值变化的数列。动态数列按其指标表现形式的不同分为三种:1.总量指标动态数列总量指标动态数列是将总量指标在不同时间上的数值按时间先后顺序排列形成的数列。它反映的是现象在一段时间内达到的绝对水平及增减变化情况。总量指标动态数列又可分为时期数列和时点数列。所谓时期数列是指由时期指标构成的数列,即数列中每一指标值都是反映某现象在一段时间内发展过程的总量。时期数列具有以下特点:(1)数列具有连续统计的特点;(2)数列中各个指标数值可以相加;(3)数列中各个指标值大小与所包括的时期长短有直接关系。所谓时点数列是指由时点指标构成的数列,即数列中的每一指标值反映的是现象在某一时刻上的总量。时点数列具有以下特点:(1)数列指标不具有连续统计的特点;(2)数列中各个指标值不具有可加性;(3)数列中每个指标值的大小与其时间间隔长短没有直接联系。2.相对指标动态数列相对指标动态数列是将一系列同类相对指标值按时间先后顺序排列而形成的数列。它反映的是社会经济现象之间相互联系的发展过程。3.平均指标动态数列平均指标动态数列是将一系列平均指标值按时间先后顺序排列而形成的数列。它反映的是社会经济现象总体各单位某标志一般水平的发展变动程度。二、现象发展水平指标的种类及计算1.发展水平发展水平又称发展量。它反映社会经济现象在各个时期所达到的规模和发展的程度。发展水平既可以表现为总量指标,也可表现为相对指标或平均指标。发展水平实际就是动态数列中的每一项具体数值。2.平均发展水平平均发展水平又称序时平均数。它是动态数列中各项发展水平的平均数,反映现象在一段时期中发展的一般水平。序时平均数与一般平均数既有区别又有共同之处,其区别是:序是平均数平均的是现象总体在不同时期上的数量表现,从动态上说明其在某一时期内发展的一般水平。而一般平均数是将总体各单位同一时间的变量值差异抽象化,用以反映总体在具体历史条件下的一般水平。序时平均数是根据动态数列计算的,而一般平均数是根据变量数列计算的。其共同点是:它们都是将各个变量值差异抽象化。平均发展水平的计算有以下几种方法:\n(1)由总量指标动态数列计算序时平均数由于总量指标动态数列分为时期数列和时点数列,而形成以下几种计算方法:①由时期数列计算②由时点数列计算时点数列有连续时点数列和间断时点数列之分,其计算方法也不相同。在间断时点数列的条件下计算又有两种情况:若间断的间隔相等,则采用“首末折半法”计算。公式为:若间断的间隔不等,则应以间隔数为权数进行加权平均计算。公式为:(2)由相对指标或平均指标动态数列计算序时平均数 由于这两种动态数列是由总量指标动态数列派生出来的,因此其计算序时平均数的方法也是由总量指标计算序时平均数的方法派生出来的。具体方法为:先根据资料分别计算出所对比的两个数列的序时平均数,然后将两个序时平均数进行对比,从而得到相对指标或平均指标动态数列的序时平均数。基本公式为:式中:代表相对指标或平均指标动态数列的序时平均数;代表分子数列的序时平均数;代表分母数列的序时平均数;a数列和b数列既可以是时期数列也可以是时点数列。例1.某企业总产值和职工人数的资料如下:月份3456月总产值(万元)1150117012001370月末职工人数(千人)6.56.76.97.1试计算1、该企业第二季度平均每月全员劳动生产率2、二季度平均劳动生产率解:根据公式(万元)\n(千人)1、第二季度月平均全员劳动生产率为(万元/千人)=1833.33(元/人)2、二季度平均劳动生产率(元/人)三、现象发展的速度指标1.发展速度发展速度是以相对数的形式表现的动态分析指标,它是两个不同时期发展水平指标对比的结果。说明的是报告期水平是基期水平的百分之几或若干倍。计算时,由于基期的不同而分为环比发展速度和定基发展速度。环比发展速度是报告期水平与基期水平之比,反映现象在前后两期的发展变化情况;定基发展速度是各报告期水平同某一固定基期水平对比,说明现象在较长时期内发展的总速度。二者的关系是:环比发展速度的连乘积等于定基发展速度。公式表示为:2.增长量增长量是以绝对数形式表示的速度分析指标,是两个不同时期发展水平之差。公式为:增长量=报告期水平-基期水平计算时,根据基期的不同分为逐期增长量和累计增长量。逐期增长量是以报告期前一期水平为基期计算的,表示现象较短时期变动的数量;累计增长量是以固定的基期水平计算的,表示现象在较长时期变动的数量。二者的关系为:逐期增长量之和等于累计增长量。公式表示为对增长量还可以加以平均,用来说明某现象在一定时期内平均每期增长的数量公式为:逐期增长量之和累计增长量平均增长量=─────────=─────────逐期增长量的个数逐期增长量的个数3.增长速度增长速度是反映现象数量增长程度的动态相对指标,由增长量对比基期水平或发展速度减1(100%)而得。由计算公式可以看出,增长速度与发展速度是不同的。发展速度说明的是报告期水平为基期水平的多少倍或百分之几,增长速度说明的是报告期水平比基期水平增加了多少倍或减少了百分之几。发展速度总是正的,而增长速度则有正有负,分别表示正增长和负增长。\n4.平均发展速度和平均增长速度平均发展速度和平均增长速度统称为平均速度。平均速度是各个时期环比速度的平均数,说明社会经济现象在较长时期内速度变化的平均程度。平均发展速度表示现象逐期发展的平均速度,平均增长速度则反映了现象逐期递增的平均速度。(1)平均发展速度的计算平均发展速度是对各期环比发展速度求平均的结果,其计算方法有几何平均法和方程式法。常用的方法是几何平均法。几何平均法计算平均发展速度的公式为:(2)平均增长速度的计算平均增长速度=平均发展速度-1(100%)平均增长速度有正负,分别表示逐期平均递增程度和平均递减程度。例1.某地区1990—1995年粮食产量资料如下年份199019911992199319941995粮食产量(万吨200定基增长量(万吨)-3140环比发展速度(%)-11010593要求:(1)利用指标间的关系将表中所缺数字补齐;(2)计算该地区1991年至1995年这五年期间的粮食产量的年平均增长量以及按水平法计算的年平均增长速度.解:(1)计算结果如下表:时间199019911992199319941995粮食产量(万吨)200220231240252234.4累计增长量(万吨)-2031405234.4环比发展速度(%)-110105103.910593(2)年平均增长量=34.4÷5=6.88(万吨)(2分)年平均增长速度==0.032或3.2%例2.某地区粮食产量1985-1987年平均发展速度是1.03,1988-1989年平均发展速度是1.05,1990年比1989年增长6%,试求1985-1990年的平均发展速度。解:平均发展速度=例3.已知1990年我们国民收入生产额为14300亿元,若以平均每年增长5%的速度发展,到2000年国民收入生产额将达到什么水平?解:已知则:=14300(亿元)5.速度与水平指标的结合运用现象发展的水平分析是现象发展速度分析的基础,速度分析是水平分析的深入和继续,把它们结合起来运用,就能够对现象发展变化的规律做出更加深刻的分析。\n(1)要把发展速度和增长速度同隐藏其后的发展水平结合起来进行分析。这种分析可采用增长1%的绝对值指标。它是以绝对增长量除以相应的百分数表现的增长速度,即前期水平的百分之一。(2)要把平均速度指标与动态数列发展水平指标结合运用。平均速度指标是环比速度的代表值,如果动态数列中各期水平差异大,平均速度就掩盖了它们的差别,这时就需要把各期水平和环比速度结合起来应用。四、长期趋势、季节变动、循环变动的概念动态数列中各项发展水平的发展变化,是由许多复杂因素共同作用的结果。影响因素归纳起来大体有四种:长期趋势、季节变动、循环变动和不规则变动。1.长期趋势长期趋势指现象在一段较长的时间内,由于普遍的、持续的、决定性的基本因素的作用,使发展水平沿着一个方向,逐渐向上或向下变动的趋势叫长期趋势。认识和掌握事物的长期趋势,可以把握事物发展变化的基本特点。如果时间序列的环比增长速度大体相同,在测定其长期趋势时可以拟合指数曲线、如果时间序列的一阶增量大体相同,在测定其长期趋势时可以拟合直线2.季节变动季节变动指现象受季节的影响而发生的变动。即现象在一年内或更短的时间内随着时序的更换,呈现周期重复的变化。季节变动的原因,既有自然因素又有社会因素。3.循环变动指现象发生的周期比较长的涨落起伏变动。多指经济发展兴衰相替之变动。1、简述统计研究的基本特点。要点:数量性;总体性;具体性;社会性;2、时期指标和时点指标各有何特点?要点:时期指标----可以累加,相加有意义;连续登记;指标值的大小与时间长短相关;时点指标----不可以累加,只相加无意义;非连续登记;指标值的大小与时间间隔长短无关3、确定调查的目的和任务;确定调查对象和调查单位;确定调查项目,设计调查表式;确定调查的时间和期限;确定调查的组织工作。4、标准差有计量单位且与变量的计量单位相同,所以当两变量的计量单位不同和变量值大小不同时,要反映总体中各单位标志值的平均差异程度时要使用标准差系数.5、统计指数编制中的同度量因素指什么?如何确定同度量因素的所属时期?要点:为解决不同度量的问题,使得不能直接相加的现象变得可以相加的媒介因素称为同度量因素。编制数量指标综合指数时,指数化指标是数量指标,以基期的质量指标作为同度量因素;编制质量指标综合数时,指数化指标是质量指标,以计算期的数量指标为同度量因素。6、既然标准差可以反映总体中各单位标志值的平均差异程度,为什么有时要使用标准差系数?7、什么是同度量因素?在编制统计指数时,同度量因素起什么作用?8、什么是抽样误差?影响抽样误差大小的因素有哪些?9、什么是样本容量?影响样本容量的因素有哪些?10、测定长期趋势的方法有那些?11、简述最小平方法的基本思想?\n要点:应用最小平方法研究现象的发展趋势及相互关系,就是用一定的数学模型,对观测数据配合一条合适的趋势线来近似的反映变量之间的平均变化关系。根据最小平方法的原理,这条趋势线必须满足最基本的要求,即所有观察值与趋势线的估计值的离差平方和最小。以此为基础,估计模型中的有关参数。12、简述一元线性回归分析的特点?要点:(1)两个变量中,一个是自变量,一个是因变量,这是前提。(2)回归方程不是抽象的数学模型,而是用自变量数值推算因变量数值的依据,必须反映变量之间关系的一般变动情况。(3)对于因果关系不明确的变量,可以确定两个不能互相替代的回归方程,但是其意义完全不同。(4)回归方程中的参数具有特定的意义。(5)计算回归方程的资料要求是,因变量是随机的,而自变量是给定的数值,求出回归方程后,也是给定自变量的值,代入方程中,推算出因变量的一般值或平均值。13、回归系数b的含义(表明自变量x每变动一个单位,因变量y平均变动b个单位)及其与相关系数的关系
查看更多

相关文章

您可能关注的文档