- 2022-08-12 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
普通生物学论文
系统理论和系统思想对于我国知识分子并不陌生。1980年代在我国学术界曾经流行过“三论”——系统论、信息论和控制论,其中的“系统论”是指奥地利科学家贝塔朗菲(L.Bertalanffy)在1970年代创立的“一般系统论”(generalsystemtheory)。尽管贝塔朗菲是以生物学家的身份去思考、研究并提出系统论的,但他的系统论并不仅仅适用于生命科学,而且适用于物理学、心理学、经济学和社会科学等各门学科。如果说过去所谈论的是指在哲学层面上的、普适性强的一般系统论,那么本文所要介绍的系统生物学(systemsbiology),则是生命科学研究领域的一门新兴学科。作为人类基因组计划的发起人之一,美国科学家莱诺伊·胡德(LeroyHood)也是系统生物学的创始人之一。在胡德看来,系统生物学和人类基因组计划有着密切的关系。正是在基因组学、蛋白质组学等新型大科学发展的基础上,孕育了系统生物学。反之,系统生物学的诞生进一步提升了后基因组时代的生命科学研究能力。正如胡德所说,“系统生物学将是21世纪医学和生物学的核心驱动力”[1]。基于这一信念,胡德在1999年年底辞去了美国西雅图市华盛顿大学的教职,与另外两名志同道合的科学家一起创立了世界上第一个系统生物学研究所(InstituteforSystemsBiology)。随后,系统生物学便逐渐得到了生物学家的认同,也唤起了一大批生物学研究领域以外的专家的关注。2002年3月,美国《科学》周刊登载了系统生物学专集。该专集导论中的第一句话这样写道:“如果对当前流行的、时髦的关键词进行一番分析,那么人们会发现,‘系统’高居在排行榜上。”什么是系统生物学?根据胡德的定义,系统生物学是研究一个生物系统中所有组成成分(基因、mRNA、蛋白质等)的构成,以及在特定条件下这些组分间的相互关系的学科[1]。也就是说,系统生物学不同于以往的实验生物学——仅关心个别的基因和蛋白质,它要研究所有的基因、所有的蛋白质、组分间的所有相互关系。显然,系统生物学是以整体性研究为特征的一种大科学。系统生物学的基本工作流程有这样四个阶段。首先是对选定的某一生物系统的所有组分进行了解和确定,描绘出该系统的结构,包括基因相互作用网络和代谢途径,以及细胞内和细胞间的作用机理,以此构造出一个初步的系统模型。第二步是系统地改变被研究对象的内部组成成分(如基因突变)或外部生长条件,然后观测在这些情况下\n系统组分或结构所发生的相应变化,包括基因表达、蛋白质表达和相互作用、代谢途径等的变化,并把得到的有关信息进行整合。第三步是把通过实验得到的数据与根据模型预测的情况进行比较,并对初始模型进行修订。第四阶段是根据修正后的模型的预测或假设,设定和实施新的改变系统状态的实验,重复第二步和第三步,不断地通过实验数据对模型进行修订和精练。系统生物学的目标就是要得到一个理想的模型,使其理论预测能够反映出生物系统的真实性。作为后基因组时代的新秀,系统生物学与基因组学、蛋白质组学等各种“组学”的不同之处在于,它是一种整合型大科学。首先,它要把系统内不同性质的构成要素(基因、mRNA、蛋白质、生物小分子等)整合在一起进行研究。系统生物学研究所的第一篇研究论文,就是整合酵母的基因组分析和蛋白质组分析,研究酵母的代谢网络[2]。由于不同生物分子的研究难度不一样,技术发展程度不一样,目前对它们的研究水平有较大的差距。例如,基因组和基因表达方面的研究已经比较完善,而蛋白质研究就较为困难,至于涉及生物小分子的代谢组分的研究就更不成熟。因此,要真正实现这种整合还有很长的路要走。对于多细胞生物而言,系统生物学要实现从基因到细胞、到组织、到个体的各个层次的整合。《科学》周刊系统生物学专集中一篇题为“心脏的模型化——从基因到细胞、到整个器官”的论文,很好地体现了这种整合性[3]。我们知道,系统科学的核心思想是:“整体大于部分之和”;系统特性是不同组成部分、不同层次间相互作用而“涌现”的新性质;对组成部分或低层次的分析并不能真正地预测高层次的行为。如何通过研究和整合去发现和理解涌现的系统性质,是系统生物学面临的一个带根本性的挑战。系统生物学整合性的第三层含义是指研究思路和方法的整合。经典的分子生物学研究是一种垂直型的研究,即采用多种手段研究个别的基因和蛋白质。首先是在DNA水平上寻找特定的基因,然后通过基因突变、基因剔除等手段研究基因的功能;在基因研究的基础上,研究蛋白质的空间结构,蛋白质的修饰以及蛋白质间的相互作用等等。基因组学、蛋白质组学和其他各种“组学”则是水平型研究,即以单一的手段同时研究成千查看更多