浙江省2021届高考数学一轮复习第八章立体几何与空间向量第1节空间几何体的结构三视图和直观图含解析

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

浙江省2021届高考数学一轮复习第八章立体几何与空间向量第1节空间几何体的结构三视图和直观图含解析

第1节 空间几何体的结构、三视图和直观图 考试要求 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.‎ 知 识 梳 理 ‎1.简单多面体的结构特征 ‎(1)棱柱的侧棱都平行且相等,上、下底面是全等且平行的多边形;‎ ‎(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形;‎ ‎(3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.‎ ‎2.旋转体的形成 几何体 旋转图形 旋转轴 圆柱 矩形 任一边所在的直线 圆锥 直角三角形 任一直角边所在的直线 圆台 直角梯形 垂直于底边的腰所在的直线 球 半圆 直径所在的直线 ‎3.三视图 ‎(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.‎ ‎(2)三视图的画法 ‎①基本要求:长对正,高平齐,宽相等.‎ ‎②在画三视图时,重叠的线只画一条,挡住的线要画成虚线.‎ ‎4.直观图 空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.‎ ‎(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.‎ ‎[常用结论与易错提醒]‎ ‎1.常见旋转体的三视图 ‎(1)球的三视图都是半径相等的圆.‎ ‎(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.‎ ‎(3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形.‎ ‎(4)水平放置的圆柱的正视图和侧视图均为全等的矩形.‎ ‎2.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.‎ ‎3.空间几何体不同放置时其三视图不一定相同.‎ ‎4.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.‎ 诊 断 自 测 ‎1.判断下列说法的正误.‎ ‎(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.(  )‎ ‎(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(  )‎ ‎(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.(  )‎ ‎(4)正方体、球、圆锥各自的三视图中,三视图均相同.(  )‎ 解析 (1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.‎ ‎(2)反例:如图所示图形不是棱锥.‎ ‎(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线还平行于x轴,平行于y轴的线还平行于y轴,所以∠A也可能为135°.‎ ‎(4)球的三视图均相同,而圆锥的正视图和侧视图相同,且为等腰三角形, 其俯视图为圆心和圆,正方体的三视图不一定相同.‎ 答案 (1)× (2)× (3)× (4)×‎ ‎2.某空间几何体的正视图是三角形,则该几何体不可能是(  )‎ A.圆柱 B.圆锥 ‎ C.四面体 D.三棱柱 解析 由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.‎ 答案 A ‎3.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为(  )‎ 解析 先根据正视图和俯视图还原出几何体,再作其侧视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧视图为图②.‎ 答案 B ‎4.(2018·上海卷)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是(  )‎ A.4           B.8‎ C.12 D.16‎ 解析 符合题目条件的面有四个,每一个都有4个顶点,所以选择D.‎ 答案 D ‎5.正△AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.‎ 解析 画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=DB(D为OA的中点),∴S△O′A′B′=×S△OAB=×a2=a2.‎ 答案 a2‎ ‎6.(2020·北京平谷区质检)某四棱锥的三视图如图所示,则该四棱锥的侧面中直角三角形的个数为________个.‎ 解析 由三视图知几何体为一四棱锥,其直观图为如图中的P-ABCD;由图得该棱锥的四个侧面均为直角三角形,故该四棱锥的侧面中,直角三角形的个数为4个.‎ 答案 4‎ 考点一 空间几何体的结构特征 ‎【例1】 (1)给出下列命题:‎ ‎①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;‎ ‎②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;‎ ‎③棱台的上、下底面可以不相似,但侧棱长一定相等.‎ 其中正确命题的个数是(  )‎ A.0 B.1 ‎ C.2 D.3‎ ‎(2)以下命题:‎ ‎①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;‎ ‎②圆柱、圆锥、圆台的底面都是圆面;‎ ‎③一个平面截圆锥,得到一个圆锥和一个圆台.‎ 其中正确命题的个数为(  )‎ A.0 B.1 ‎ C.2 D.3‎ 解析 (1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.‎ ‎(2)由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③不正确.‎ 答案 (1)A (2)B 规律方法 (1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可.‎ ‎(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.‎ ‎(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.‎ ‎【训练1】 下列结论正确的是(  )‎ A.各个面都是三角形的几何体是三棱锥 B.夹在圆柱的两个平行截面间的几何体还是一个旋转体 C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥 D.圆锥的顶点与底面圆周上任意一点的连线都是母线 解析 如图1知,A不正确.如图2,两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.‎ 若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,C错误.由圆锥母线的概念知,选项D正确.‎ 答案 D 考点二 空间几何体的三视图  多维探究 角度1 由空间几何体的直观图判断三视图 ‎【例2-1】 一几何体的直观图如图,下列给出的四个俯视图中正确的是(  )‎ 解析 该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选项B适合.‎ 答案 B 角度2 由三视图判定几何体 ‎【例2-2】 (1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是(  )‎ A.三棱锥 B.三棱柱 ‎ C.四棱锥 D.四棱柱 ‎(2)(2020·北京昌平区二模)某四棱锥的三视图如图所示,在此四棱锥的侧面中直角三角形的个数为(  )‎ A.1 B.2 ‎ C.3 D.4‎ 解析 (1)由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱,故选B.‎ ‎(2)由三视图可得,该四棱锥如图P-ABCD,直角三角形有:△PAD、△PCD、△PAB,共3个.‎ 答案 (1)B (2)C 规律方法 (1)由实物图画三视图或判断选择三视图,按照“正侧一样高,正俯一样长,俯侧一样宽”的特点确认.‎ ‎(2)根据三视图还原几何体 ‎①对柱、锥、台、球的三视图要熟悉.‎ ‎②明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.‎ ‎③根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.‎ 提醒 对于简单组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置,区分好实线和虚线的不同.‎ ‎【训练2】 (1)(角度1)如图所示,由几个棱长相等的小正方体搭成的一个几何体.现老师给小明四张图,要求其删除其中的一张图,使得剩下的三张图可以作为该几何体的三视图,则小明要删除(  ) ‎ ‎(2)(角度2)(2020·北京丰台区期末)某四棱锥的三视图如图所示,则该四棱锥的棱中最长的棱的长度为(  )‎ A.2 B. ‎ C.2 D.2 解析 (1)由几何体的直观图得其正视图为C中的图形,侧视图为A中的图形,俯视图为D中的图形,故选B.‎ ‎(2)由三视图可知,该三棱锥的底面是直角梯形,一条侧棱与底面垂直,直观图如图,图中PA与底面垂直,且AD∥BC,AD⊥AB,PA=AB=BC=2AD ‎=2,由勾股定理可得PD=CD=,PB=2,PC==2,所以最长的棱为2.‎ 答案 (1)B (2)D 考点三 空间几何体的直观图 ‎【例3】 已知等腰梯形ABCD,上底CD=1,腰AD=CB=,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.‎ 解析 如图所示,作出等腰梯形ABCD的直观图:‎ 因为OE==1,‎ 所以O′E′=,E′F=,‎ 则直观图A′B′C′D′的面积S′=×=.‎ 答案  规律方法 (1)画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握.对直观图的考查有两个方向,一是已知原图形求直观图的相关量,二是已知直观图求原图形中的相关量.‎ ‎(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=S原图形.‎ ‎【训练3】 有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.‎ 解析 如图1,在直观图中,过点A作AE⊥BC,垂足为E.‎ 在Rt△ABE中,AB=1,∠ABE=45°,∴BE=.‎ 又四边形AECD为矩形,AD=EC=1.‎ ‎∴BC=BE+EC=+1.‎ 由此还原为原图形如图2所示,是直角梯形A′B′C′D′.‎ 在梯形A′B′C′D′中,A′D′=1,B′C′=+1,A′B′=2.‎ ‎∴这块菜地的面积S=(A′D′+B′C′)·A′B′=××2=2+.‎ 答案 2+ 基础巩固题组 一、选择题 ‎1.关于空间几何体的结构特征,下列说法不正确的是(  )‎ A.棱柱的侧棱长都相等 B.棱锥的侧棱长都相等 C.三棱台的上、下底面是相似三角形 D.有的棱台的侧棱长都相等 解析 根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.‎ 答案 B ‎2.如图所示的几何体是棱柱的有(  )‎ A.②③⑤ B.③④⑤‎ C.③⑤ D.①③‎ 解析 由棱柱的定义知③⑤两个几何体是棱柱.‎ 答案 C ‎3.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(  )‎ 解析 由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.‎ 答案 A ‎4.已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,且它的正视图如图所示,则该四棱锥侧视图的面积是(  )‎ A.4 B.4‎ C.2 D.2‎ 解析 由四棱锥P-ABCD的正视图可知,四棱锥的正视图是一个高为2,底边长为2的等腰三角形,又因为四棱锥P-ABCD的底面ABCD是边长为2的正方形,所以四棱锥的侧视图是一个高为2,底边长为2的等腰三角形,所以侧视图的面积为×2×2=2.故选C.‎ 答案 C ‎5.将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为(  )‎ 解析 易知侧视图的投影面为矩形,又AF的投影线为虚线,即为左下角到右上角的对角线,∴该几何体的侧视图为选项D.‎ 答案 D ‎6.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为(  )‎ A.6 B.4 ‎ C.6 D.4‎ 解析 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD,最长的棱为AD==6.‎ 答案 C ‎7.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是(  )‎ A.①③ B.①④‎ C.②④ D.①②③④‎ 解析 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.‎ 答案 A ‎8.(2020·北京昌平区二模)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(  )‎ A. B.2 ‎ C.2 D.3‎ 解析 根据三视图可知几何体是一个四棱锥,底面是一个直角梯形,AD⊥AB、AD∥BC,AD=AB=2,BC=1,PA⊥底面ABCD,且PA=2,∴该四棱锥最长棱的棱长为PC===3.‎ 答案 D 二、填空题 ‎9.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于________.‎ 解析 由题知此正方体的正视图与侧视图是一样的,正视图的面积与侧视图的面积相等为.‎ 答案  ‎10.直观图(如图)中,四边形O′A′B′C′为菱形且边长为2 cm,则在原坐标系xOy中四边形为________(填图形形状);面积为________cm2.‎ 解析 将直观图恢复到平面图形(如图),是OA=2 cm,OC=4 cm的矩形,SOABC=2×4=8(cm2).‎ 答案 矩形 8‎ ‎11.某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为________.‎ 解析 由三视图可知几何体为如图所示的三棱锥P-ABC,其最长棱为AC==.‎ 答案  ‎12.我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何”,羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的表面中三个梯形的面积之和为________.‎ 解析 由三视图可知,该几何体的直观图如图五面体,其中平面ABCD⊥平面ABEF,CD=2,AB=6,EF=4,底面梯形是等腰梯形,高为3,梯形ABCD的高为4,等腰梯形EFDC的高为=5,三个梯形的面积之和为×4+×3+×5=46.‎ 答案 46‎ ‎13.已知正方体ABCD-A1B1C1D1的棱长为4,点M是棱BC的中点,点P在底面ABCD内,点Q 在线段A1C1上,若PM=1,则PQ长度的最小值为________.‎ 解析 由题意得,过点Q作QN⊥平面ABCD,垂足为N,‎ 则点N在线段AC上,分别连接PQ,PN,‎ 在Rt△PNQ中,‎ PQ==,‎ 在平面ABCD内过点M作MR⊥AC,垂足为R,则MR=2,即M到直线AC的最短距离为2,‎ 又PM=1,当P∈MR时,此时PNmin=MR-1=1,‎ 所以PQmin==.‎ 答案  ‎14.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有________对.‎ 解析 由三视图的特征,将俯视图拉伸得四棱锥A-BCDE,且顶点A在底面BCDE上的射影为棱BC的中点O,又底面BCDE为矩形,则侧面ABC⊥底面BCDE,侧面ABE⊥侧面ABC,侧面ACD⊥侧面ABC;又因为AC=AB=2,BC=4,即AB⊥AC,则由CD⊥侧面ABC,知CD⊥AB,故AB⊥侧面ACD,故侧面ABE⊥侧面ACD.因此此几何体中共有4对平面互相垂直.‎ 答案 4‎ 能力提升题组 ‎15.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为(  )‎ A.①和② B.③和① ‎ C.④和③ D.④和②‎ 解析 如图,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④,俯视图为②.‎ 答案 D ‎16.(2020·北京房山区一模)某三棱锥的三视图如图所示,正视图与侧视图是两个全等的等腰直角三角形,直角边长为1,俯视图是正方形,则该三棱锥的四个面的面积中最大的是(  )‎ A. B. C. D.1‎ 解析 该多面体为一个三棱锥D-ABC,是正方体的一部分,如图所示,其中3个面是直角三角形,1个面是等边三角形,S△BCD=×()2=,S△BAD=S△ACD=×1×=,S△BCA=×1×1= ‎,所以该三棱锥的四个面的面积中最大的是.‎ 答案 C ‎17.正四面体的棱长为2,以其中心O为球心作球,球面与正四面体四个面相交所成的曲线总长度为4π,则球O的半径为(  )‎ A. B. C.或 D.或 解析 设球O的半径为R,若正四面体一个面截球如图1所示,则小圆周长为π,所以小圆半径为,又球心到四面体的面的距离为1,故R==;若正四面体一个面截球如图2所示,记D为AC的中点,由题意知=.设小圆O1的半径为r,则∠AO1B=,‎ 又∠BO1C=,∠AO1D=(∠BO1C-∠AO1B)=-,O1D=,所以cos= ①.‎ 令f(r)=cos-,‎ 则f′(r)=-×‎ sin+>0,‎ 所以函数f(r)在(0,+∞)上单调递增,且最多有一个零点,而f(2)=0,‎ 所以方程①有唯一解2,从而R==,‎ 所以球O的半径是或,故选D.‎ 答案 D ‎18.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为________.‎ 解析 如图,过C′作y′轴的平行线C′D′,与x′轴交于点D′.‎ 则C′D′==a.‎ 又C′D′是原△ABC的高CD的直观图,所以CD=a.‎ 故S△ABC=AB·CD=a2.‎ 答案 a2‎
查看更多

相关文章

您可能关注的文档