【数学】2019届一轮复习人教A版随机事件的概率学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2019届一轮复习人教A版随机事件的概率学案

随机事件的概率 ‎【考点梳理】‎ ‎1.概率和频率 ‎(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.‎ ‎(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A) 估计概率P(A).‎ ‎2.事件的关系与运算 定义 符号表示 包含关系 若事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)‎ B⊇A ‎(或A⊆B)‎ 相等关系 若B⊇A,且A⊇B,那么称事件A与事件B相等 A=B 并事件 ‎(和事件)‎ 若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)‎ A∪B ‎(或A+B)‎ 交事件 ‎(积事件)‎ 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)‎ A∩B ‎(或AB)‎ 互斥事件 若A∩B为不可能事件,那么称事件A与事件B互斥 A∩B=∅‎ 对立事件 若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件 A∩B=∅‎ 且A∪B=Ω ‎3.概率的几个基本性质 ‎(1)概率的取值范围:0≤P(A)≤1.‎ ‎(2)必然事件的概率P(E)=1.‎ ‎(3)不可能事件的概率P(F)=0.‎ ‎(4)互斥事件概率的加法公式.‎ ‎①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B);‎ ‎②若事件B与事件A互为对立事件,则P(A)=1-P(B).‎ ‎【考点突破】‎ 考点一、随机事件间的关系 ‎【例1】从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是(  )‎ A.①     B.②④‎ C.③     D.①③‎ ‎[答案] C ‎[解析]从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.‎ 又①②④中的事件可以同时发生,不是对立事件.‎ ‎【类题通法】‎ ‎1.本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出 ,看所求事件包含哪些试验结果,从而断定所给事件的关系.‎ ‎2.准确把握互斥事件与对立事件的概念.‎ ‎(1)互斥事件是不可能同时发生的事件,但可以同时不发生.‎ ‎(2)对立事件是特殊的互斥事件,特殊在对立的两个事件有且仅有一个发生.‎ ‎【对点训练】‎ 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________. ‎ ‎①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1;⑤P(B)=P(C).‎ ‎[答案] ①④‎ ‎[解析] 当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C∪E为必然事件,④正确.由于P(B)=,P(C)=,所以⑤不正确.‎ 考点二、随机事件的频率与概率 ‎【例2】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:‎ 上年度出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 保 费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:‎ 出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 频数 ‎60‎ ‎50‎ ‎30‎ ‎30‎ ‎20‎ ‎10‎ ‎(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;‎ ‎(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160 ”,求P(B)的估计值;‎ ‎(3)求续保人本年度平均保费的估计值.‎ ‎[解析] (1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.‎ ‎(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.‎ ‎(3)由所给数据得 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 频率 ‎0.30‎ ‎0.25‎ ‎0.15‎ ‎0.15‎ ‎0.10‎ ‎0.05‎ 调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.‎ 因此,续保人本年度平均保费的估计值为1.192 5a.‎ ‎【类题通法】‎ ‎1.解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.‎ ‎2.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率 反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率 作为随机事件概率的估计值.‎ ‎【对点训练】‎ 随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:‎ 日期 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ ‎13‎ ‎14‎ ‎15‎ 天气 晴 雨 阴 阴 阴 雨 阴 晴 晴 晴 阴 晴 晴 晴 晴 日期 ‎16‎ ‎17‎ ‎18‎ ‎19‎ ‎20‎ ‎21‎ ‎22‎ ‎23‎ ‎24‎ ‎25‎ ‎26‎ ‎27‎ ‎28‎ ‎29‎ ‎30‎ 天气 晴 阴 雨 阴 阴 晴 阴 晴 晴 晴 阴 晴 晴 晴 雨 ‎(1)在4月份任选一天,估计西安市在该天不下雨的概率;‎ ‎(2)西安市某 校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.‎ ‎[解析] (1)由4月份天气统计表知,在容量为30的样本中,不下雨的天数是26,‎ 以频率估计概率,在4月份任选一天,西安市不下雨的概率为=.‎ ‎(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f==.‎ 以频率估计概率,运动会期间不下雨的概率为.‎ 考点三、互斥事件与对立事件的概率 ‎【例3】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.‎ 一次购物量 ‎1至4件 ‎5至8件 ‎9至12件 ‎17件及以上 ‎13至16件 顾客数(人)‎ x ‎30‎ ‎25‎ y ‎10‎ 结算时间(分钟/人)‎ ‎1‎ ‎1.5‎ ‎2‎ ‎2.5‎ ‎3‎ 已知这100位顾客中一次购物量超过8件的顾客占55 .‎ ‎(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;‎ ‎(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率).‎ ‎[解析] (1)由题意,得 解得x=15,且y=20.‎ 该超市所有顾客一次性购物的结算时间组成一个总体,100位顾客一次购物的结算时间视为总体的一个容量为100的简单随机抽样,顾客一次购物的结算时间的平均值可用样本平均数估计.‎ 又==1.9,‎ ‎∴估计顾客一次购物的结算时间的平均值为1.9分钟.‎ ‎(2)设B,C分别表示事件“一位顾客一次购物的结算时间分别为2.5分钟、3分钟”.设A表示事件“一位顾客一次购物的结算时间不超过2分钟的概率.”‎ 将频率视为概率,得P(B)==,‎ P(C)==.‎ ‎∵B,C互斥,且=B+C,‎ ‎∴P()=P(B+C)=P(B)+P(C)=+=,‎ 因此P(A)=1-P()=1-=,‎ ‎∴一位顾客一次购物结算时间不超过2分钟的概率为0.7.‎ ‎【类题通法】‎ ‎1.(1)求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出 .‎ ‎(2)结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误.‎ ‎2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”“至少”型问题,多考虑间接法.‎ ‎【对点训练】‎ 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:‎ ‎(1)P(A),P(B),P(C);‎ ‎(2)1张奖券的中奖概率;‎ ‎(3)1张奖券不中特等奖且不中一等奖的概率.‎ ‎[解析] (1)P(A)=,‎ P(B)==,‎ P(C)==.‎ 故事件A,B,C的概率分别为,,.‎ ‎(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.‎ ‎∵A,B,C两两互斥,‎ ‎∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)‎ ‎==,‎ 故1张奖券的中奖概率约为.‎ ‎(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,‎ ‎∴P(N)=1-P(A∪B)=1-=,‎ 故1张奖券不中特等奖且不中一等奖的概率为.‎
查看更多

相关文章

您可能关注的文档