高一数学必修1人教A课时练习及详解:第2章2_2_2第二课时知能优化训练
1.(2010年高考天津卷)设a=log54,b=(log53)2,c=log45,则( )
A.a<c<b B.b<c<a
C.a<b<c D.b<a<c
解析:选D.a=log54<1,log53<log54<1,b=(log53)2<log53,c=log45>1,故b<a<c.
2.已知f(x)=loga|x-1|在(0,1)上递减,那么f(x)在(1,+∞)上( )
A.递增无最大值 B.递减无最小值
C.递增有最大值 D.递减有最小值
解析:选A.设y=logau,u=|x-1|.
x∈(0,1)时,u=|x-1|为减函数,∴a>1.
∴x∈(1,+∞)时,u=x-1为增函数,无最大值.
∴f(x)=loga(x-1)为增函数,无最大值.
3.已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值与最小值之和为loga2+6,则a的值为( )
A. B.
C.2 D.4
解析:选C.由题可知函数f(x)=ax+logax在[1,2]上是单调函数,所以其最大值与最小值之和为f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.
4.函数y=log(-x2+4x+12)的单调递减区间是________.
解析:y=logu,u=-x2+4x+12.
令u=-x2+4x+12>0,得-2
b>1 D.b>a>1
解析:选B.∵loga2b>c B.a>c>b
C.c>a>b D.c>b>a
解析:选B.∵10,∴c>b,故选B.
7.已知0<a<1,0<b<1,如果alogb(x-3)<1,则x的取值范围是________.
解析:∵0<a<1,alogb(x-3)<1,∴logb(x-3)>0.
又∵0<b<1,∴0<x-3<1,即3<x<4.
答案:3<x<4
8.f(x)=log2的图象关于原点对称,则实数a的值为________.
解析:由图象关于原点对称可知函数为奇函数,
所以f(-x)+f(x)=0,即
log2+log2=0⇒log2=0=log21,
所以=1⇒a=1(负根舍去).
答案:1
9.函数y=logax在[2,+∞)上恒有|y|>1,则a取值范围是________.
解析:若a>1,x∈[2,+∞),|y|=logax≥loga2,即loga2>1,∴1<a<2;若0<a<1,x∈[2,+∞),|y|=-logax≥-loga2,即-loga2>1,∴a>,∴<a<1.
答案:<a<1或1<a<2
10.已知f(x)=是R上的增函数,求a的取值范围.
解:f(x)是R上的增函数,
则当x≥1时,y=logax是增函数,
∴a>1.
又当x<1时,函数y=(6-a)x-4a是增函数.
∴6-a>0,∴a<6.
又(6-a)×1-4a≤loga1,得a≥.
∴≤a<6.
综上所述,≤a<6.
11.解下列不等式.
(1)log2(2x+3)>log2(5x-6);
(2)logx>1.
解:(1)原不等式等价于,
解得<x<3,
所以原不等式的解集为(,3).
(2)∵logx>1⇔>1⇔1+<0
⇔<0⇔-1<log2x<0
⇔⇔<x<1.
∴原不等式的解集为(,1).
12.函数f(x)=log(3x2-ax+5)在[-1,+∞)上是减函数,求实数a的取值范围.
解:令t=3x2-ax+5,则y=logt在[-1,+∞)上单调递减,故t=3x2-ax+5在[-1,+∞)单调递增,且t>0(即当x=-1时t>0).
因为t=3x2-ax+5的对称轴为x=,所以⇒⇒-8<a≤-6.